Skip to main content

Advertisement

Log in

A first genetic linkage map of bluegill sunfish (Lepomis macrochirus) using AFLP markers

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Genetic linkage maps were constructed for bluegill sunfish, Lepomis macrochirus, using AFLP in a F1 inter-population hybrid family based on a double-pseudo testcross strategy. Sixty-four primer combinations produced 4,010 loci, of which 222 maternal loci and 216 paternal loci segregated at a 1:1 Mendelian ratio, respectively. The female and male framework maps consisted of 176 and 177 markers ordered into 31 and 33 genetic linkage groups, spanning 1628.2 and 1525.3 cM, with an average marker spacing of 10.71 and 10.59 cM, respectively. Genome coverage was estimated to be 69.5 and 69.3% for the female and male framework maps, respectively. On the maternal genetic linkage map, the maximum length and marker number of the linkage groups were 122.9 cM and 14, respectively. For the paternal map, the maximum length and marker number of the linkage groups were 345.3 cM and 19, respectively, which were much greater than those on the maternal genetic linkage map. The other genetic linkage map parameters of the paternal genetic linkage map were similar to those in the maternal genetic linkage map. For both the female and male maps, the number of linkage groups was greater than the haploid chromosome number of bluegill (2n = 48), indicating some linkage groups may distribute on the same chromosome. This genetic linkage mapping is the first step toward to the QTL mapping of traits important to cultured breeding in bluegill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agresti JJ, Seki S, Cnaani A et al (2000) Breeding new strains of tilapia: development of an artificial center of origin and linkage map based on AFLP and microsatellite loci. Aquaculture 185:43–56

    Article  CAS  Google Scholar 

  • Alonso-Blanco C, Peeters AJM, Koornneef M et al (1998) Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction parative karyology of three species of North American catfishes of a Ler/Cvi recombinant inbred line population. Plant J 14:259–271

    Article  CAS  PubMed  Google Scholar 

  • Chakravarti A, Lasher LK, Reefer JE (1991) A maximum likelihood method for estimating genome length using genetic linkage data. Genetics 128:175–182

    CAS  PubMed  Google Scholar 

  • Coimbra RM, Kobayashi K, Koretsugu S et al (2003) A genetic linkage map of the Japanese flounder, Paralichthys olivaceus. Aquaculture 220:203–218

    Article  CAS  Google Scholar 

  • Ehlinger T (1989) Learning and individual variation in bluegill foraging: habitat-specific techniques. Animal Behavior 38:643–658

    Article  Google Scholar 

  • Felip A, Young WP, Wheeler PA et al (2005) An AFLP-based approach for the identification of sex-linked markers in rainbow trout (Oncrohynchus mykiss). Aquaculture 247:35–43

    Article  CAS  Google Scholar 

  • Fishman L, Kelly AJ, Morgan E et al (2001) A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics 159:1701–1716

    CAS  PubMed  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross mapping strategy and RAPD markers. Genetics 137:1121–1137

    CAS  PubMed  Google Scholar 

  • Hayward RS, Wang HP (2006) Rearing male bluegills indoors may be advantageous for producing food-size sunfish. J World Aquac Soc 37:496–508

    Article  Google Scholar 

  • Hubert S, Hedgecock D (2004) Linkage maps of microsatellite DNA markers for the Pacific oyster. Genetics 168:351–362

    Article  CAS  PubMed  Google Scholar 

  • Kocher TD, Lee WJ, Sobolewska H et al (1998) A genetic linkage map of a cichlid fish, the tilapia (Orechromsi niloticus). Genetics 148:1225–1232

    CAS  PubMed  Google Scholar 

  • Kouichi K, Ryuji Y, Osamu K et al (2006) Origin and dispersal of bluegill sunfish, Lepomis macrochirus, in Japan and Korea. Mol Ecol 15:613–621

    Article  Google Scholar 

  • Lewis WM, Heidinger RC (1978) Use of hybrids in the management of small impoundments. In: Novinger GD, Dillard JC (eds) New approaches for the management of small impoundments North Central Division. American Fisheries Society, Special Publication 5, Bethesda, pp 104–108

    Google Scholar 

  • Li YT, Byrne K, Miggiano E et al (2003) Genetic mapping of the kuruma prawn Penaeus japonicus using AFLP markers. Aquaculture 219:143–156

    Article  CAS  Google Scholar 

  • Li L, Xiang JH, Liu X et al (2005) Construction of AFLP-based genetic linkage map for Zhikong scallop, Chlamys farreri Jones et Preston and mapping of sex-linked markers. Aquaculture 245:63–73

    Article  CAS  Google Scholar 

  • Liu RH, Meng JL (2003) Mapdraw: a Microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Heraditas 25:317–321

    Google Scholar 

  • Liu ZJ, Karsi A, Li P et al (2003) An AFLP-based genetic linkage map of channel catfish (Ictalurus punctatus) constructed by using an interspecific hybrid resource family. Genetics 165:687–694

    CAS  PubMed  Google Scholar 

  • Lundin M, Mikkelsen B, Moran P et al (1999) Cosmid clones from Atlantic salmon: physical genome mapping. Aquaculture 173:59–64

    Article  CAS  Google Scholar 

  • Lyttle TW (1991) Segregation distorters. Annu Rev Genet 25:511–557

    Article  CAS  PubMed  Google Scholar 

  • McLarney W (1987) Characteristics of important cultured animals summarized. In: The freshwater aquaculture book. Hartley and Marks, Point Roberts, Washington, pp 485–508

  • Neff BD (2001) Genetic paternity analysis and breeding success in bluegill sunfish (Lepomis macrochirus). J Hered 92:111–119

    Article  CAS  PubMed  Google Scholar 

  • Neff BD, Fu P, Gross MR (1999) Microsatellite evolution in sunfish (Centrarchidae). Can J Fish Aquat Sci 56:1198–1205

    Article  CAS  Google Scholar 

  • Pejic I, Ajmone-Marsan P, Morgante M et al (1998) Comparative analysis of genetic similarity among maize inbred lines detected by RFLP, RAPD, SSR, and AFLPs. Theor Appl Genet 97:1248–1255

    Article  CAS  Google Scholar 

  • Perez F, Erazo C, Zhinaula M et al (2004) A sex-specific linkage map of white shrimp Penaeus (Litopenaeus) vannamei based on AFLP markers. Aquaculture 242:105–118

    Article  CAS  Google Scholar 

  • Poompuang S, Na-Nakorn U (2004) A preliminary genetic map of walking catfish (Clarias macrocephalus). Aquaculture 232:195–203

    Article  CAS  Google Scholar 

  • Roberts FJ (1964) A chromosome study of twenty species of Centrarchidae. J Morph 115:401–408

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Danzmann RG, Gharbi K et al (2000) A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics 155:1331–1345

    CAS  PubMed  Google Scholar 

  • Sun XW, Liang LQ (2004) A genetic linkage map of common carp (Cyprinus carpio L.) and mapping of a locus associated with cold tolerance. Aquaculture 238:165–172

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acid Res 23:4407–4414

    Article  CAS  PubMed  Google Scholar 

  • Waldbieser GC, Bosworth BG, Nonneman DJ et al (2001) A microsatellite-based genetic linkage map for channel catfish, Ictalurus punctatus. Genetics 158:727–734

    CAS  PubMed  Google Scholar 

  • Wang WJ, Kong J, Dong SR et al (2006) Genetic mapping of the Chinese shrimp Fenneropenaeus chinensis using AFLP markers. Acta Zoologica Sinica 52:575–584

    CAS  Google Scholar 

  • Young WP, Wheeler PA, Coryell VH et al (1998) A detail linkage map of rainbow trout produced using doubled haploids. Genetics 148:839–850

    CAS  PubMed  Google Scholar 

  • Yue ZQ, Wang WJ, Kong J et al (2004) Construction of genetic linkage maps of Fenneropenaeus chinensis based on “double pseudo-testcross” strategy and AFLP markers. High Technol Lett 5:88–93

    Google Scholar 

  • Zimmerman AM, Wheeler PA, Ristow SS et al (2005) Composite interval mapping reveals three QTL associated with pyloric caeca number in rainbow trout, Oncorhynchus mykiss. Aquaculture 247:85–95

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the USDA CSREES award numbers 2005-38879-02357 and 2006-38879-03684. Salaries and research support were provided by state and federal funds appropriated to The Ohio State University, Ohio Agricultural Research and Development Center. Li Li and Aibin Zhan participated in partial work and provided some helpful suggestions. We thank Dean Rapp, Paul O’Bryant and Russ MacDonald for securing and managing the bluegill broodstock and progeny, and for sampling finclips.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Ping Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, WJ., Wang, HP., Yao, H. et al. A first genetic linkage map of bluegill sunfish (Lepomis macrochirus) using AFLP markers. Aquacult Int 18, 825–835 (2010). https://doi.org/10.1007/s10499-009-9303-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-009-9303-1

Keywords