Skip to main content

Effects of Using Live Grass Shrimp (Palaemonetes varians) as the only Source of Food for the Culture of Cuttlefish, Sepia officinalis (Linnaeus, 1758)

Abstract

The life cycle of cuttlefish fed ad libitum exclusively on live grass shrimp (Palaemonetes varians) was studied during 5 consecutive generations. Different culture temperatures promoted different (P < 0.05) exponential growth for each life cycle, being summer generations shorter than those of winter. Higher temperatures promoted higher IGR’s and mortality, while lower temperatures promoted increased life span, reproduction stages, total fecundity and total egg biomass. Increased generations also seemed to increase fertility. A “hybrid” generation promoted the best results in terms of hatchling weight, individual fecundity and fertility. Mean egg weight was related to female size and embryonic development took longer at lower temperatures. Brood stock sex ratios seemed to be temperature related. All of these culture aspects were also compared between themselves in order to establish future brood stock methodologies. Grass shrimp proved to be a good diet for the culture of cuttlefish throughout the life cycle. The use of only one species reduces costs and labor associated to cuttlefish culture.

This is a preview of subscription content, access via your institution.

References

  1. Boletzky S (1975) The reproductive cycle of Sepiolidae. Pubblicazionne Stazione Zoologica Napoli 39:84–95

    Google Scholar 

  2. Boletzky S (1979) Growth and life-span of Sepia officinalis under artificial conditions. Rapport Communitaire Internationel Mer Mèditeranee, 25/26, vol 10, 10 p

    Google Scholar 

  3. Boletzky S (1983) Sepia officinalis. In: Boyle PR (ed) Cephalopod life cycles, vol I. Academic Press, London, pp 31–52

    Google Scholar 

  4. Boletzky S (1987) Embryonic phase. In: Boyle PR (ed) Cephalopod life cycles, vol II. Academic Press, London, pp 5–31

    Google Scholar 

  5. Boletzky S (1988) A new record of long-continued spawning in Sepia officinalis (Mollusca: Cephalopoda). Rapp Comm Int Mer Médit 31(2):257

    Google Scholar 

  6. Boyle PR (1991) The UFAW handbook on the care and management of cephalopods in the laboratory. University Federation for Animal Welfare, 63 p

  7. Boletzky S, Hanlon RT (1983) A review of the laboratory maintenance, rearing and culture of cephalopod mollusks. Memoires Nat Museum Victoria 44:147–187

    Google Scholar 

  8. Bouchaud O, Daguzan J (1989) Etude de dévelopement de l’oeuf de Sepia officinalis L. (Céphalopode, Sepioidea) en conditions expérimentales. Haliotis 19:189–200

    Google Scholar 

  9. Bouchaud O (1991) Energy consumption of the cuttlefish Sepia officinalis L. (Mollusca: Cephalopoda) during embryonic development, preliminary results. Bull Mar Sci 49(1–2):333–340

    Google Scholar 

  10. Bouchaud O, Daguzan J (1990) Etude expérimentale de l’influence de la température sur le déroulement du développement embryonnaire de la Seiche Sepia officinalis L. (Céphalopode, Sepioidae). Cahiers de Biologie Marine 31:131–145

    Google Scholar 

  11. Bouchaud O, Galois R (1990) Utilization of egg-yolk lipids during the embryonic development of Sepia officinalis L. in relation to temperature of the water. Compared Biochem Physiol 97B(3):611–615

    Article  Google Scholar 

  12. Castro BG, Guerra A (1990) The diet of Sepia officinalis (Linnaeus, 1758) and Sepia elegans Blainville, 1827 (Cephalopoda: Sepioidea) from the Ria de Vigo (NW Spain). Sci Mar 54:375–388

    Google Scholar 

  13. Caverivière A, Domain F, Diallo A (1999) Observations of the influence of temperature on the␣length of embryonic development in Octopus vulgaris (Senegal). Aquat Living Resour 12:151–154

    Article  Google Scholar 

  14. Correia M, Domingues PM, Sykes AV, Andrade JP (2005) Effects of culture density on growth and broodstock management of the cuttlefish, Sepia officinalis (Linnaeus, 1758). Aquaculture 245:163–173

    Article  Google Scholar 

  15. DeRusha RH, Forsythe JW, DiMarco FP, Hanlon RT (1989) Alternative diets for maintaining and rearing cephalopods in captivity. Lab Anim Sci 39:306–312

    PubMed  CAS  Google Scholar 

  16. Domingues PM (1999) Development of alternative diets for the mass culture of the European cuttlefish Sepia officinalis. Ph.D. Thesis Univ. of the Algarve, p 95

  17. Domingues PM, Turk PE, Andrade JP, Lee PG (1998) Pilot-scale production of mysid shrimp in a static water system. Aquacult Int 6:387–402

    Article  Google Scholar 

  18. Domingues PM, Fores R, Turk PE, Lee PG, Andrade JP (2000) Mysid culture: lowering costs with alternative diets. Aquacult Res 31:719–728

    Article  Google Scholar 

  19. Domingues PM, Kingston T, Sykes A, Andrade JP (2001a) Growth of young cuttlefish, Sepia officinalis (Linnaeus, 1758) at the upper end of the biological distribution temperature range. Aquacult Res 32:923–930

    Article  Google Scholar 

  20. Domingues PMT, Sykes A, Andrade JP (2001b) The use of artemia or mysids as food for hatchlings of the cuttlefish Sepia officinalis Linnaeus, 1758; effects on growth and survival throughout the life cycle. Aquaculture International 9:319–331

    Article  Google Scholar 

  21. Domingues PMT, Sykes A, Andrade JP (2002) The effects of temperature in the life cycle of two consecutive generations of the cuttlefish Sepia officinalis (Linnaeus, 1758), cultured in the Algarve (South Portugal). Aquacult Int 10:207–220

    Article  Google Scholar 

  22. Domingues PM, Poirier R, Dickel L, Almansa E, Sykes A, Andrade J (2003a) Effects of culture density and live prey on growth and survival of juvenile cuttlefish, Sepia officinalis. Aquacult Int 11:225–242

    Article  Google Scholar 

  23. Domingues P, Sykes A, Sommerfield A, Andrade P (2003b) The effects of feeding live or frozen prey on growth, survival and the life cycle of the cuttlefish, Sepia officinalis (Linnaeus, 1758). Aquacult Int 11:397–410

    Article  Google Scholar 

  24. Domingues P, Sykes A, Sommerfield A, Almansa E, Lorenzo A, Andrade P (2004) Growth and survival of cuttlefish, Sepia officinalis (Linnaeus, 1758) of different ages fed crustaceans and fish. Effects of frozen and live prey. Aquaculture 229:239–254

    Article  Google Scholar 

  25. Forsythe JW (1993) A working hypothesis of how seasonal change may impact the field growth of young cephalopods. In: Okutani T, O’Dor RK, Kubodera T (eds) Recent advances in cephalopod fisheries biology. Tokai University Press, pp 133–143

  26. Forsythe JW, Van Heukelem WF (1987) Growth. In: Boyle PR (ed) Cephalopod life cycles, vol II. Academic Press, London, pp 135–155

    Google Scholar 

  27. Forsythe JW, Hanlon RT, DeRusha RH (1991) Pilot large-scale culture of Sepia in biomedical research. In: Boucaud-Camou E (ed) The Cuttlefish. Centre de publications de l’Université de Caen, pp 313–323

  28. Forsythe JW, DeRusha RH, Hanlon RT (1994) Growth, reproduction and life span of Sepia officinalis (Cephalopoda: Mollusca) cultured through seven consecutive generations. J Zool, London 233:175–192

    Google Scholar 

  29. Forsythe JW, Lee PG, Walsh L, Clark T (2002) The effects of crowding on growth of the European cuttlefish, Sepia officinalis Linnaeus, 1758 reared at two temperatures. J Exp Mar Biol Ecol 269:173–185

    Article  Google Scholar 

  30. Grigoriou P, Richardson CA (2004) Aspects of the growth of cultured cuttlefish Sepia officinalis (Linnaeus 1758). Aquacult Res 35:1141–1148

    Article  Google Scholar 

  31. Guerra A, Castro BG (1988) On the life cycle of Sepia officinalis (Cephalopoda, Sepiodea) in the Ria␣de Vigo (NW Spain). Cahier de Biologie Marine 29:395–405

    Google Scholar 

  32. Hanley JS, Smolowitz R, Bullis RA, Mebane WN, Gabr HR, Hanlon RT (1998) Modified laboratory culture techniques for the European cuttlefish Sepia officinalis. Biol Bull Mar Biol Lab Woods Hole 195:223–225

    CAS  Google Scholar 

  33. Koueta N, Boucaud-Camou E (1999) Food intake and growth in reared early juvenile cuttlefish Sepia officinalis L. (Mollusca: Cephalopoda). J Exp Mar Biol Ecol 240:93–109

    Article  Google Scholar 

  34. Koueta N, Boucaud-Camou E (2001) Basic growth relations in experimental rearing of early juvenile cuttlefish Sepia officinalis L. (Mollusca: Cephalopoda). J Exp Mar Biol Ecol 265:75–87

    Article  Google Scholar 

  35. Koueta N, Castro BG, Boucaud-Camou E (2000) Biochemical indices for instantaneous growth estimation in young cephalopod Sepia officinalis L. ICES J Mar Sci 57:1–7

    Article  Google Scholar 

  36. Koueta N, Boucaud-Camou E, Noel B (2002) Effect of enriched natural diet on survival and growth of juvenile cuttlefish Sepia officinalis L. Aquaculture 203:293–310

    Article  Google Scholar 

  37. Lee PG (1994) Nutrition of cephalopods: fuelling the system. Mar Freshwater Behav Physiol 25:35–51

    CAS  Google Scholar 

  38. Lee PG, Forsythe JW, DiMarco FP, DeRusha RH, Hanlon RT (1991) Initial palatability and grotwth trials on pelleted diets for cephalopods. Bull Mar Sci 49:362–372

    Google Scholar 

  39. Lee PG, Turk PE, Forsythe JW, DiMarco FP (1998) Cephalopod culture: physiological, behavioral and environmental requirements. Suisanzoshoku 46:417–422

    Google Scholar 

  40. Mangold-Wirz K (1963) Biologie des cephalopodes benthiques et nectoniques de la Mer Catalane. Vie et Milieu 13:285

  41. Mather JA (1986) A female-dominated feeding hierarchy in juvenile Sepia officinalis in the laboratory. Mar Behav Physiol 12:233–244

    Article  Google Scholar 

  42. Navarro JC, Villanueva R (2000) Lipid and fatty acid composition of early stages of cephalopods: an␣approach to their lipid requirements. Aquaculture 183:161–177

    CAS  Article  Google Scholar 

  43. O’Dor RK, Wells MJ (1987) Energy and nutrient flow. In: Boyle PR (ed) Cephalopod life cycles, Vol II. Academic Press, London, pp 109–133

    Google Scholar 

  44. Pascual E (1978) Crecimiento y alimentacion de tres generaciones de Sepia officinalis en cultivo. Investigacion Pesquera 42:421–442

    Google Scholar 

  45. Pecl GT, Steer MA, Hodgson KE (2004) The role of hatchling size in generating the intrinsic size-at-age variability of cephalopods: extending the Forsythe Hypothesis. Mar Freshwater Res 55:387–394

    Article  Google Scholar 

  46. Richard A (1971) Contribuition à l’étude expérimentale de la croissance et de la maturation sexuelle de Sepia officinalis L. (Mollusque, Céphalopode). Thèse no 248:Univ. Lille, pp 264

  47. Richard A (1975) L’élevage de la seiche (Sepia officinalis L., Mollusque Céphalopode). 10th European Symposium on Marine Biology. vol I. Ostend, Belgium, pp 359–380

  48. Sinanoglou VJ, Miniadis-Meimaroglou S (1998) Fatty acid of neutral and polar lipids of (edible) Mediterranean cephalopods. Food Res Int 31:467–473

    CAS  Article  Google Scholar 

  49. Sinanoglou VJ, Miniadis-Meimaroglou S (2000) Phospholipids in mediterranean cephalopods. J␣Biosci 55:245–255

    CAS  Google Scholar 

  50. Sykes A (2003) On the use of live grass shrimp (Palaemonetes varians) as the only prey for cuttlefish (Sepia officinalis) cultured throughout the life cycle. MSc. Thesis, Universidade do Porto– Instituto de Ciências Biomédicas Abel Salazar, Portugal, pp 61

  51. Sykes A, Domingues P, Loyd M, Sommerfield A, Andrade P (2003) The influence of culture density and enriched environments on the first stage culture of young cuttlefish, Sepia officinalis (Linnaeus, 1758). Aquacult Int 11:531–544

    Article  Google Scholar 

  52. Toll RB, Strain CH (1988) Freshwater and terrestrial food organisms as an alternative diet for laboratory culture of cephalopods. Malacologia 29(1):195–200

    Google Scholar 

  53. Villa H (1998) Estudo de alguns aspectos da biologia reprodutiva da espécie Sepia officinalis (Linnaeus, 1758) na Ria Formosa. MSc Thesis Universidade do Algarve, pp 82

  54. Warnke K (1994) Some aspects of social interaction during feeding in Sepia officinalis (Mollusca: Cephalopoda) hatched and reared in the laboratory. Vie et Millieu 44(2):125–131

    Google Scholar 

  55. Wittink DR (1988) The application of regression analysis. Allyn & Bacon, Inc., USA, pp 323

    Google Scholar 

  56. Zar JH (1999) Biostatistical analysis. 4th edn. Ryu T (ed) Prentice-Hall Inc., Upper Saddle River, NJ, pp 663

Download references

Acknowledgements

António Sykes and Pedro Domingues would like to thank the Fundação para␣a␣Ciência e a Tecnologia and Agência da Inovação, from the Portuguese government, that provided the funding for this research. This study was funded by CORRAM-“Cephalopoda: Octopodidae—relationship of the resource with the marine environment” Program Praxis XXI, ref. 2/2.1/MAR/1707/95 and AQUASEPIA–“Development of Aquaculture Practices for Cuttlefish”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to António V. Sykes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sykes, A.V., Domingues, P.M. & Andrade, J.P. Effects of Using Live Grass Shrimp (Palaemonetes varians) as the only Source of Food for the Culture of Cuttlefish, Sepia officinalis (Linnaeus, 1758). Aquacult Int 14, 551–568 (2006). https://doi.org/10.1007/s10499-006-9054-1

Download citation

Keywords

  • Cuttlefish culture
  • Grass shrimp
  • Live feeds
  • Reproduction
  • Sepia officinalis
  • Temperature