Aquaculture International

, Volume 13, Issue 6, pp 575–592 | Cite as

Bacteria associated with early life stages of the great scallop, Pecten maximus: impact on larval survival

  • Lise Torkildsen
  • Christophe Lambert
  • Are Nylund
  • Thorolf Magnesen
  • Øivind Bergh


A bacteriological study was carried out at a scallop (Pecten maximus) hatchery near Bergen, western Norway following a severe increase in mortality rates during the larval stages of the scallops. No larvae survived to settling, except for those in groups treated prophylactically with chloramphenicol. In order to identify pathogenic strains of bacteria, we performed a challenge test on 10- to 16-day-old larvae using isolated bacterial strains from the hatchery. Infection with six of these strains produced mortalities that were not statistically different from that resulting from infection with the known pathogen Vibrio pectenicida. However, about 5% of the strains tested in the challenge experiment produced higher motility rates than found in the unchallenged control group, indicating a possible probiotic effect. On the basis of 16S rDNA analysis on these strains, the phylogenetic tree indicated two groups of apparent pathogens: (1) one strain, LT13, grouped together with Alteromonas/Pseudoalteromonas; (2) a cluster of strains grouped together with Vibrio splendidus (LT06, LT21, LT73, PMV18 and PMV19). Strain LT13 was isolated from cultures of the microalga Chaetoceros calcitrans used for feed, while the other strains were isolated from larval cultures. Transmission electron microscopy showed intracellular bacteria that resembled bacteria in the groups Chlamydiaceae and Rickettsiaceae.


Bacteria Challenge experiment Phenotypic characterisation 16S rDNA Scallop larvae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study received financial support from the Norwegian Research Council and the European Commission, contract FAIR GT 97 3926. We thank the personnel of the scallop hatchery for their kind help.


  1. Aoki T., Kitao T., Kawano K. (1981). Changes in drug resistance of Vibrio anguillarum in cultured ayu, Plecoglossus altivelis Temminck and Schlegel, in Japan. J Fish Dis 4:223–230CrossRefGoogle Scholar
  2. Avakyan A.A., Popov (1984). Rickettsiae and Chlamydiae: comparative electron microscopic studies. Acta Virol 28:159–173PubMedGoogle Scholar
  3. Bergh Ø., (1995). Bacteria associated with early life stages of halibut, Hippoglossus hippoglossus L., inhibit growth of a pathogenic Vibrio sp. J Fish Dis 18:31–40CrossRefGoogle Scholar
  4. Bergh Ø., Hansen G.H., Taxt R.E. (1992). Experimental infection of eggs and yolk sac larvae of halibut, Hippoglossus hippoglossus L. J Fish Dis 15:379–391CrossRefGoogle Scholar
  5. Bergh Ø., Naas K.E. and Harboe T. (1994). Shift in the intestinal microflora of Atlantic halibut (Hippoglossus hippoglossus) larvae during first feeding. Can J Fish Aquat Sci 51:1899–1903CrossRefGoogle Scholar
  6. Bergh Ø., and Strand Ø. (2001). Great scallop, Pecten maximus, research and culture strategies in Norway: a review. Aquacult Int 9:305–318CrossRefGoogle Scholar
  7. Brown C. (1974). A pigment-producing pseudomonad which discolours containers of embryos of a bivalve mollusc. Chesapeake Sci 15:17–21CrossRefGoogle Scholar
  8. Douillet P., and Langdon C. (1993). Effects of marine bacteria on the culture of axenic oyster Crassostrea gigas (Thunberg) larvae. Biol Bull 184:36–51CrossRefGoogle Scholar
  9. Elston R.A. (1990). Rickettsia and Chlamydia of molluscs. In: Mollusc Diseases: Guide for the Shellfish Farmer. University of Washington, Seattle, p. 41Google Scholar
  10. Elston R.A. and Leibovitz L. (1980). Pathogenesis of experimental vibriosis in larval American oysters, Crassostrea virginica. Can J Fish Aquat Sci 37:964–978Google Scholar
  11. Felsenstein J. (1993). phylip (Phylogeny Inference Package) version 3.5c.distributed by the author. Department of Genetics University of Washington, Seattle, USAGoogle Scholar
  12. Garland C.D., Nash G.V., Sumner C.E. and McMeekin T.A. (1983). Bacterial pathogens of oyster larvae (Crassostrea gigas) in a Tasmanian hatchery. Aust J Mar Freshwater Res 34:483–487CrossRefGoogle Scholar
  13. Gibson L.F., Woodworth J. and George A.M. (1998). Probiotic activity of Aeromonas media on the Pacific oyster, Crassostrea gigas, when challenged with Vibrio tubiashii. Aquaculture 169:111–120CrossRefGoogle Scholar
  14. Grigoni S., Boucher-Rodoni R., Demarta A., Tonolla M. and Peduzzi R. (2000). Phylogenetic characterisation of bacterial symbionts in the accessory nidamental glands of the sepioid Sepia officinalis (Cephalopoda: Decapoda). Mar Biol 136:217–222CrossRefGoogle Scholar
  15. Gruffyd L.L.D. and Beaumont A.R. (1970). Determination of the optimum concentration of eggs and spermatozoa for the production of normal larvae in Pecten maximus. Helgoländer Wissenschaft Meerestuners 20:486–497CrossRefGoogle Scholar
  16. Hansen G.H. and Olafsen J.A. (1989). Bacterial colonization of cod (Gadus morhua L.) and halibut (Hippoglossus hippoglossuss) eggs in marine aquaculture. Appl Environ Microbiol 55:1435–1446PubMedGoogle Scholar
  17. Hansen G.H. and Sørheim R. (1991). Improved method for phenotypical characterization of marine bacteria. J Microbiol Methods 13:231–241CrossRefGoogle Scholar
  18. Hasegawa M., Kishino H. and Saitou N. (1991). On the maximum-likelihood method in molecular phylogenetics. J Mol Evol 5:443–445CrossRefGoogle Scholar
  19. Huelsenbeck J.P. (1995). The robustness of 2 phylogenetic methods – 4-taxon simulation. Mol Biol Evol 5:843–849Google Scholar
  20. Ivanova E.P., Kiprianova E.A., Mikhailov V.V., Levanova G.F., Garagulya A.D., Gorshkova N.M., Vysotskii M.V., Nicolau D.V., Yumoto N., Taguchi T. and Yoshikawa S. (1998). Phenotypic diversity of Pseudoalteromonas citrea from different marine habitats and emendation of the description. Int J Syst Bacteriol 48:247–265PubMedGoogle Scholar
  21. Jefferies V.E. (1982). Three Vibrio strains pathogenic to larvae of Crassostrea gigas and Ostrea edulis. Aquaculture 29:201–226CrossRefGoogle Scholar
  22. Jensen S., Bergh Ø., Enger Ø., and Hjeltnes B. (2002). Use of PCR-RFLP for genotyping 16S rRNA and characterizing bacteria cultured from halibut fry. Canadian J Microbiol 48:379–386CrossRefPubMedGoogle Scholar
  23. Jorquera M.A., Riquelme C.E., Loyola L.A. and Muñoz L.F. (1999). Production of bacterial substances by a marine vibrio isolated from cultures of the scallop Argopecten purpuratus. Aquacult Int 7:433–448CrossRefGoogle Scholar
  24. Karnovsky M.J. (1965). A formaldehyde glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137. A (Abstract)Google Scholar
  25. Kuhner M.K. and Felsenstein J. (1994). A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol Biol Evol 3:459–468Google Scholar
  26. Kumazawa N.H., Nakagaki E., Yonekawa Y., Ikura K. and Morimoto N. (1991). Ecological cycle of thermostable direct hemolysin-producing strains of Vibrio parahaemolyticus in a brackish-water area with special reference to molluscs and attached microalgae. J Veter Med Sci 53(2):263–267Google Scholar
  27. Lambert C., Nicolas J.L., Cilia V., and Corre S. (1998). Vibrio pectenicida sp. nov., a pathogen of scallop (Pecten maximus) larvae. Int J Syst Bacteriol 48:481–487PubMedCrossRefGoogle Scholar
  28. Le Gall G., Changot D., Mialhe E. and Grizel H. (1988). Branchial Rickettsiales-like infection associated with a mass mortality of sea scallops Pecten maximus. Dis Aquat Organ 4:229–232CrossRefGoogle Scholar
  29. Le Gall G., Mialhe E., Chagot D. and Grizel H. (1991). Epizootiological study of rickettsiosis of the Saint-Jacques scallop Pecten maximus. Dis Aquat Organ 10:139–145CrossRefGoogle Scholar
  30. Leibovitz L. (1989). Chlamydiosis: a newly reported serious disease of larval and ostmetamorphic bay scallops, Argopecten irradians (Lamarck). J Fish Dis. 12:125–136CrossRefGoogle Scholar
  31. Morrison C. and Shum G. (1982). Chlamydia-like organisms in the digestive diverticula of the bay scallop, Argopecten irradians (Lmk). J Fish Dis. 5:173–184CrossRefGoogle Scholar
  32. Morrison C. and Shum G. (1983). Rickettsias in the kidney of the bay scallop, Argopecten irradians (Lamarck). J Fish Dis 6:537–541CrossRefGoogle Scholar
  33. Nakamura A., Takahashi K.G. and Mori K. (1999). Vibriostatic bacteria isolated from rearing seawater of oyster brood stock: Potentiality as biocontrol agents for vibriosis in oyster larvae. Fish Pathol 34(3):139–144Google Scholar
  34. Nicolas J.L., Ansquer D. and Cochard J.C. (1992). Isolation and characterisation of a pathogenic bacterium specific to Manila clam, Tapes philipinarum, larvae. Dis Aquat Organ 14:153–159CrossRefGoogle Scholar
  35. Nicolas J.L., Corre S., Gauthier G., Robert R. and Ansquer D. (1996). Bacterial problems associated with scallop Pecten maximus larval culture. Dis Aquat Organ 27:67–76CrossRefGoogle Scholar
  36. Nylund A., Kvenseth A.M. and Isdal E. (1998). A Morphological study of the epitheliocystis agent in farmed Atlantic salmon. J Anim Aquat Health 10:43–55CrossRefGoogle Scholar
  37. Otto S.V., Harshbarger J.C. and Chang S.C. (1979). Status of selected unicellular eukaryote pathogens and prevalence and histopathology of inclusions containing obligate prokaryote parasites in commercial bivalve molluscs from Maryland estuaries. Haliotis 8:285–295Google Scholar
  38. Riquelme C., Hayashida G., Toranzo A.E., Vilches J. and Chavez P. (1995a). Pathogenicity studies on a Vibrio anguillarum related (VAR) strain causing an epizootic in Argopecten purpuratus larvae cultured in Chile. Dis Aquat Organ 22:135–141CrossRefGoogle Scholar
  39. Riquelme C., Hayashida G., Vergara N., Vasquez A. Morales Y., Chavez P. (1995b). Bacteriology of the scallop Argopecten purpuratus (Lamarck, 1819) cultured in Chile. Aquaculture 138:49–60CrossRefGoogle Scholar
  40. Riquelme C., Toranzo A.E., Barja J.L., Vergara N. and Araya R. (1996a). Association of Aeromonas hydrophila and Vibrio alginolyticus with larval mortalities of scallop (Argopecten purpuratus). J Invert Pathol 67:213–218CrossRefGoogle Scholar
  41. Riquelme C., Hayashida G., Araya R., Uchida A., Satomi M. and Ishida Y. (1996b). Isolation of a native bacterial strain from the scallop Argopecten purpuratus with inhibitory effects against pathogenic vibrios. J Shellfish Res 15(2):369–374Google Scholar
  42. Riquelme C., Araya R., Vergara N., Rojas A., Guaita M. and Candia M. (1997). Potential probiotic strains in the culture of the Chilean scallop Argopecten purpuratus (Lamarck, 1819). Aquaculture 154:17–26CrossRefGoogle Scholar
  43. Ruiz-Ponte C., Samain J.F., Sánchez J.L. and Nicolas J.L. (1999). The benefit of a Roseobacter species on the survival of scallop larvae. Mar Biotechnol 8:52–59CrossRefGoogle Scholar
  44. Sandaa R.-A., Magnesen T., Torkildsen L., and Bergh Ø. (2003). Characterisation of the bacterial community associated with early stages of great scallop (Pecten maximus), using denaturing gradient gel electrophoresis (DGGE). Syst Appl Microbiol 26:302–311CrossRefPubMedGoogle Scholar
  45. Spangaard B., Huber I., Nielsen J., Appel K.F. and Gram L. (2000). The microflora of rainbow trout intestine: a comparison of traditional and molecular identification. Aquaculture 182:1–15CrossRefGoogle Scholar
  46. Sugita H., Nakamura T., Tanaka K. and Deguchi Y. (1994). Identification of O/129-sensitive Aeromonas by microplate hybridisation method. Fish Sci 60:351–352Google Scholar
  47. Sugumar G., Nakai T., Hirata Y., Matsubara D. and Muroga K. (1998). Vibrio spelndidus biovar II as the causative agent of bacillary necrosis of Japanese oyster Crassostrea gigas larvae. Dis Aquat Organ 33:111–118PubMedCrossRefGoogle Scholar
  48. Torkildsen L., Samuelsen O.B., Lunestad B.T. and Bergh Ø. (2000). Minimum inhibitory concentrations of chloramphenicol, florfenicol, trimethoprim/sulfadiazine and flumequine in seawater of bacteria associated with scallops (Pecten maximus) larvae. Aquaculture 185:1–12CrossRefGoogle Scholar
  49. Tubiash H.S., Chanley P.E. and Leifson E. (1965). Bacillary necrosis, a disease of larval and juvenile bivalve molluscs. J Bacteriol 90:1036–1043PubMedGoogle Scholar
  50. Turnbull J.F. (1993). Rickettsias and chlamydias. In: Inglish V., Roberts R.J., Bromage N.R., (eds) Bacterial Diseases of Fish. Blackwell Science, Oxford, UK, pp. 236–254Google Scholar
  51. Van de Peer Y., De Rijk P., Wuyts J., Winkelmans T. and De Wachter R. (2000). The European Subunit Ribosomal RNA database. Nucleic Acids Res 28(1):175–176CrossRefPubMedGoogle Scholar
  52. Vaneechoutte M., Rossau R., De Vos P., Gillis M., Janssens D., Paepe N., De Rouck A., Fiers T., Claeys G. and Kersters K. (1992). Rapid identification of bacteria of the Comamonadaceae with amplified ribosomal DNA-restriction analysis (ARDRA). FEMS Microbiol Lett 93:227–234CrossRefGoogle Scholar
  53. Yoshimizu M., Kimura T. and Sakai M. (1980). Microflora of the embryo and fry of salmonids. Bull Jpn Soc Sci Fish 48:967–975Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Lise Torkildsen
    • 1
  • Christophe Lambert
    • 1
    • 2
  • Are Nylund
    • 3
  • Thorolf Magnesen
    • 4
  • Øivind Bergh
    • 1
  1. 1.Institute of Marine ResearchBergenNorway
  2. 2.Laboratoire des sciences de l’environnement marin (LEMAR), Institut Universitaire Européen de la Mer (IUEM) Université de Bretagne Occidentale (UBO)PlouzanéFrance
  3. 3.Department of BiologyUniversity of BergenBergenNorway
  4. 4.University of BergenCentre for Studies of Environment and ResourcesBergenNorway

Personalised recommendations