Oxygen Consumption in Permeable and Cohesive Sediments of the Gulf of Aqaba

Abstract

Oxygen profiles were measured in the sediments of the Gulf of Aqaba (Red Sea), an oligotrophic marine system affected by episodic seasonal flash floods and intense aeolian dry deposition. Sediment cores were retrieved from shallow (15–45 m), intermediate (250–561 m) and deep (700 m) water sites of south–north and east–west transects. Dissolved oxygen concentrations were measured simultaneously by using microelectrodes and microoptodes immediately after sampling and after transportation. Oxygen penetration depths were found to increase from 2 to 5 mm at the shallow water sites with sandy permeable sediments to 10–21 mm at the deeper sites with cohesive muddy sediments. This increase corresponds to decrease in oxygen diffusive fluxes at the sediment–water interface and oxygen consumption rates with depth. Oxygen consumption rates exhibit local maxima at the oxic–anoxic sediment boundary, which may be attributed to oxygen reduction coupled to oxidation of dissolved Fe(II) and Mn(II) at deep and intermediate water sites and of hydrogen sulfide at shallow water sites. Microelectrodes and microoptodes measurements of cohesive sediments from deep and intermediate water sites yielded similar results. By comparison, the microoptodes displayed more robust measurements than microelectrodes in sandy near-shore sediments. This was attributed to their flexible fiber structure that is less likely to break or to abruptly displace sand particles. After transportation of sediment cores from Eilat to Beer Sheva followed by ≤ 24-h storage, no changes in oxygen fluxes and consumption rates were detected.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ahmerkamp S, Winter C, Krämer K, Beer D, Janssen F, Friedrich J, Kuypers MMM, Holtappels M (2017) Regulation of benthic oxygen fluxes in permeable sediments of the coastal ocean. Limnol Oceanogr 62:1935–1954

    Article  Google Scholar 

  2. Al-Rousan S, Patzold J, Al-Moghrabi S, Wefer G (2004) Invasion of anthropogenic CO2 recorded in planktonic foraminifera from the northern Gulf of Aqaba. Int J Earth Sci 93:1066–1076

    Article  Google Scholar 

  3. Al-Taani AA, Rashdan M, Khashashneh S (2015) Atmospheric dry deposition of mineral dust to the Gulf of Aqaba, Red Sea: rate and trace elements. Mar Pollut Bull 92:252–258

    Article  Google Scholar 

  4. Ben-Avraham Z, Almagor G, Garfunkel Z (1979) Sediments and structure of the Gulf of Elat (Aqaba)—Northern Red Sea. Sed Geol 23:239–267

    Article  Google Scholar 

  5. Berg P, Risgaard-Petersen N, Rysgaard S (1998) Interpretation of measured concentration profiles in sediments pore water. Limnol Oceanogr 43:1500–1510

    Article  Google Scholar 

  6. Berg P, Long MH, Huettel M, Rheuban JE, McGlathery KJ, Howarth RW, Foreman KH, Giblin AE, Marino R (2013) Eddy correlation measurements of oxygen fluxes in permeable sediments exposed to varying current flow and light. Limnol Oceanogr Methods 58:1329–1343

    Article  Google Scholar 

  7. Black KD, Calder LA, Nickell TD, Sayer MDJ, Orr H, Brand T, Cook EJ, Magill SH, Katz T, Eden N, Jones KJ, Tsapakis M, Angel D (2012) Chlorophyll, lipid profiles and bioturbation in sediments around a fish cage farm in the Gulf of Eilat, Israel. Aquaculture 356–357:317–327

    Article  Google Scholar 

  8. Blonder B, Boyko V, Turchyn A, Antler G, Sinichkin U, Knossow N, Klein R, Kamyshny A (2017) Microbially mediated cycling of sulfur and other redox-sensitive elements in the sediments of the Gulf of Aqaba. Front Microbiol 8:1131

    Article  Google Scholar 

  9. Bouldin D (1968) Models for describing the diffusion of oxygen and other mobile constituents across the mud-water interface. J Ecol 56:77–87

    Article  Google Scholar 

  10. Brendel PJ, Luther GW III (1995) Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O2, and S (-II) in porewaters of marine and freshwater sediments. Environ Sci Technol 29:751–761

    Article  Google Scholar 

  11. Cai WJ, Sayles FL (1996) Oxygen penetration depths and fluxes in marine sediments. Mar Chem 52:123–131

    Article  Google Scholar 

  12. Carlson DF, Fredj E, Gildor H, Biton E, Steinbuck JV, Monismith SG, Genin A (2012) Observations of tidal currents in the northern Gulf of Eilat/Aqaba (Red Sea). J Mar Syst 102:14–28

    Article  Google Scholar 

  13. Chase Z, Paytan A, Johnson KS, Street J, Chen Y (2006) Input and cycling of iron in the Gulf of Aqaba, Red Sea. Global Biogeochem Cycles 20:GB3017

    Article  Google Scholar 

  14. Chipman L et al (2012) Oxygen optodes as fast sensors for eddy correlation measurements in aquatic systems. Limnol Oceanogr Methods 10:304–316

    Article  Google Scholar 

  15. D’Hondt S, Spivack AJ, Pockalny R, Ferdelman TG et al (2009) Subseafloor sedimentary life in the South Pacific Gyre. Proc Natl Acad Sci USA 106:11651–11656

    Article  Google Scholar 

  16. De Beer D et al (2005) Transport and mineralization rates in North Sea sandy intertidal sediments, Sylt-Romo Basin, Wadden Sea. Limnol Oceanogr 50:113–127

    Article  Google Scholar 

  17. Denis L, Grenz C (2003) Spatial variability in oxygen and nutrient fluxes at the sediment-water interface on the continental shelf in the Gulf of Lions (NW Mediterranean). Oceanol Acta 26:373–389

    Article  Google Scholar 

  18. Donis D, McGinnis DF, Holtappels M, Feldon J, Wenzhoefer F (2016) Assessing benthic oxygen fluxes in oligotrophic deep sea sediments (HAUSGARTEN observatory). Deep Sea Res I 111:1–10

    Article  Google Scholar 

  19. Epping E, van der Zee C, Soetaert K, Helder W (2002) On the oxidation and burial of organic carbon in sediments of the Iberian margin and Nazare Canyon (NE Atlantic). Mar Ecol Prog Ser 52:399–431

    Google Scholar 

  20. Fischer JP, Ferdelman TG, D’Hondt S, Røy H, Wenzhöfer F (2009) Oxygen penetration deep into the sediment of the South Pacific gyre. Biogeosciences 6:1467–1478

    Article  Google Scholar 

  21. Forster S, Huettel M, Ziebis W (1996) Impact of boundary layer flow velocity on oxygen utilisation in coastal sediments. Mar Ecol Prog Ser 143:173–185

    Article  Google Scholar 

  22. Froelich PN et al (1979) Early oxidation of organic-matter in pelagic sediments of the Eastern Equatorial Atlantic-suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090

    Article  Google Scholar 

  23. Gehlen M, Rabouille C, Ezat U, Guidi-Guilvard LD (1997) Drastic changes in deep-sea sediment porewater composition induced by episodic input of organic matter. Limnol Oceanogr 42:980–986

    Article  Google Scholar 

  24. Genin A, Lazar B, Brenner S (1995) Atmospheric cooling, unusual vertical mixing and coral mortality following the eruption of Mt. Pinatubo. Nature 377:507–510

    Article  Google Scholar 

  25. Glazer BT, Marsh AM, Stierhoff K, Luther GW III (2004) The dynamic response of optical oxygen sensors and voltammetric electrodes to temporal changes in dissolved oxygen concentrations. Anal Chim Acta 518:93–100

    Article  Google Scholar 

  26. Glud RN (2008) Oxygen dynamics of marine sediments. Mar Biol Res 4:243–289

    Article  Google Scholar 

  27. Glud RN, Gundersen JK, Jørgensen BB, Revsbech NP, Shulz HD (1994) Diffusive and total oxygen uptake of deep-sea sediment in the eastern South Atlantic Ocean: in situ and laboratory measurements. Deep-Sea Res 41:1767–1788

    Article  Google Scholar 

  28. Glud RN, Riisgaard-Petersen N, Thamdrup B, Fossing H, Rysgaard S (2000) Benthic carbon mineralization in a high-Arctic sound (Young Sound, NE Greenland). Mar Ecol Prog Ser 206:59–71

    Article  Google Scholar 

  29. Glud RN, Røy H, Jørgensen BB (2003) Seasonal dynamics of benthic O2 uptake in a semi-enclosed bay: importance of diffusion and fauna activity. Limnol Oceanogr 48:1265–1276

    Article  Google Scholar 

  30. Glud RN, Stahl H, Berg P, Wenzhöfer F, Oguri K, Kitazato H (2009) In situ microscale variation in distribution and consumption of O2: a case study from a deep ocean margin sediment (Sagami Bay, Japan). Limnol Oceanogr 54:1–12

    Article  Google Scholar 

  31. Häse C, Al-Qutob M, Dubinsky Z et al (2006) A system in balance?—implications of deep vertical mixing for the nitrogen budget in the northern Red Sea, including the Gulf of Aqaba (Eilat). Biogeosci Discuss 3:383–408

    Article  Google Scholar 

  32. Huettel M, Gust G (1992) Impact of bioroughness on interfacial solute exchange in permeable sediments. Mar Ecol Prog Ser 89:253–267

    Article  Google Scholar 

  33. Huettel M, Ziebis W, Forster S (1996) Flow-induced uptake of particulate matter in permeable sediments. Limnol Oceanogr 41:309–322

    Article  Google Scholar 

  34. Hulthe G, Hulth S, Hall POJ (1998) Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments. Geochim Cosmochim Acta 62:1319–1328

    Article  Google Scholar 

  35. Iversen N, Jørgensen BB (1992) Diffusion coefficients of sulfate and methane in marine sediments: influence of porosity. Geochim Cosmochim Acta 57:571–578

    Article  Google Scholar 

  36. Jahnke RA (1996) The global ocean flux of particulate organic carbon: areal distribution and magnitude. Global Biogeochem Cycles 10:71–88

    Article  Google Scholar 

  37. Jørgensen BB (1982) Mineralization of organic-matter in the sea bed—the role of sulfate reduction. Nature 296:643–645

    Article  Google Scholar 

  38. Jørgensen BB (2000) Bacteria and marine biogeochemistry. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer, Berlin, pp 173–207

    Google Scholar 

  39. Katz T, Herut B, Genin A, Angel DL (2002) Gray mullets ameliorate organically enriched sediments below a fish farm in the oligotrophic Gulf of Aqaba (Red Sea). Mar Ecol Prog Ser 234:205–214

    Article  Google Scholar 

  40. Katz T, Ginat H, Eyal G, Steiner Z, Braun Y, Shalev S et al (2015) Desert flash floods form hyperpycnal flows in the coral-rich Gulf of Aqaba, Red Sea. Earth Planet Sci Lett 417:87–98

    Article  Google Scholar 

  41. Klimant I, Meyer V, Kuhl M (1995) Fiber-optic oxygen microsensors, a new tool in aquatic biology. Limnol Oceanogr 40:1159–1165

    Article  Google Scholar 

  42. Labiosa RG, Arrigo KR, Genin A, Monismith SG, van Dijken G (2003) The interplay between upwelling and deep convective mixing in determining the seasonal phytoplankton dynamics in the Gulf of Aqaba: evidence from SeaWiFS and MODIS. Limnol Oceanogr 48:2355–2368

    Article  Google Scholar 

  43. Lamb MP, Mohrig D (2009) Do hyperpycnal-flow deposits record river-flood dynamics? Geology 37:1067–1070

    Article  Google Scholar 

  44. Li J, Crowe SA, Miklesh D, Kistner M, Canfield DE, Katsev S (2012) Carbon mineralization and oxygen dynamics in sediments with deep oxygen penetration, Lake Superior. Limnol Oceanogr 75:1634–1650

    Article  Google Scholar 

  45. Luther GW III, Reimers CE, Nuzzio DB, Lovalvo D (1999) In situ deployment of voltammetric, potentiometric and amperometric microelectrodes from a ROV to determine O2, Mn, Fe, S(−2) and pH in porewaters. Environ Sci Technol 33:4352–4356

    Article  Google Scholar 

  46. Middelburg JJ, Levin LA (2009) Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6:1273–1293

    Article  Google Scholar 

  47. Middelburg JJ, Vlug T, Vandernat F (1993) Organic-matter mineralization in marine systems. Glob Planet Change 8:47–58

    Article  Google Scholar 

  48. Mouret A, Anschutz P, Deflandre B et al (2010) Oxygen and organic carbon fluxes in sediments of the Bay of Biscay. Deep Sea Res I 57:528–540

    Article  Google Scholar 

  49. Pischedda L, Cuny P, Esteves JL, Poggiale JC, Gilbert F (2012) Spatial oxygen heterogeneity in a Hediste diversicolor irrigated burrow. Hydrobiologia 680:109–124

    Article  Google Scholar 

  50. Rasheed M, Badran MI, Huettel M (2003) Influence of sediment permeability and mineral composition on organic matter degradation in three sediments from the Gulf of Aqaba, Red Sea. Estuar Coast Shelf Sci 57:369–384

    Article  Google Scholar 

  51. Rasheed M, Al-Rousan S, Manasrah R, Al-Horani F (2005) Nutrient Fluxes from deep sediment support nutrient budget in the oligotrophic waters of the Gulf of Aqaba. J Oceanogr 62:83–89

    Article  Google Scholar 

  52. Rasmussen H, Jørgensen BB (1992) Microelectrode studies of seasonal oxygen uptake in a coastal sediment: role of molecular diffusion. Mar Ecol Prog Ser 81:289–303

    Article  Google Scholar 

  53. Reiss Z, Hottinger L (1984) The Gulf of Aqaba: ecological micropaleontology. Springer, Berlin, pp 1–354

    Google Scholar 

  54. Revsbech NP (1983) Aquatic and physiological applications. In: Gnaiger E, Forstner H (eds) Polarographic oxygen sensors. Springer, New York, pp 265–273

    Google Scholar 

  55. Røy H, Huettel M, Jørgensen BB (2004) Transmission of oxygen concentration fluctuations through the diffusive boundary layer overlying aquatic sediments. Limnol Oceanogr 49:686–692

    Article  Google Scholar 

  56. Schöttner S, Pfitzner B, Grünke S, Rasheed M, Wild C, Ramette A (2011) Drivers of bacterial diversity dynamics in permeable carbonate and silicate coral reef sands from the Red Sea. Environ Microbiol 13:1815–1826

    Article  Google Scholar 

  57. Shaked Y, Genin A (2016) Israel National Monitroing Program at the Gulf of Eilat Annual Report. Available at http://shaham.moag.gov.il/

  58. Shum KT, Sundby B (1996) Organic matter processing in continental shelf sediments—the subtidal pump revisited. Mar Chem 53:81–87

    Article  Google Scholar 

  59. Steiner Z, Lazar B, Levi S, Tsroya S, Pelled O, Bookman R, Erez J (2016) The effect of bioturbation in pelagic sediments: lessons from radioactive tracers and planktonic foraminifera in the Gulf of Aqaba (Eilat), Red Sea. Geochim Cosmochim Acta 194:139–152

    Article  Google Scholar 

  60. Steiner Z, Lazar B, Torfstein A, Erez J (2017) Testing the utility of geochemical proxies for paleoproductivity in oxic sedimentary marine settings of the Gulf of Aqaba, Red Sea. Chem Geol 473:40–49

    Article  Google Scholar 

  61. Tomkins JD, Antoniades D, Lamoureux SF, Vincent WF (2008) A simple and effective method for preserving the sediment–water interface of sediment cores during transport. J Paleolimnol 40:577–582

    Article  Google Scholar 

  62. Torfstein A, Kienast SS (2018) No correlation between atmospheric dust and surface ocean chlorophyll-a in the oligotrophic Gulf of Aqaba, Northern Red Sea. J Geophys Res Biogeosci 123:391–405

    Article  Google Scholar 

  63. Torfstein A, Teutsch N, Tirosh O, Shaked Y, Rivlin T, Zipori A, Erel Y (2017) Chemical characterization of atmospheric dust from a weekly time series in the north Red Sea between 2006–2010. Geochim Cosmochim Acta 211:373–393

    Article  Google Scholar 

  64. Watson SCL, Paterson DM, Queirós AM, Rees AP, Stephens N, Widdicombe S, Beaumont NJ (2016) A conceptual framework for assessing the ecosystem service of waste remediation: in the marine environment. Ecosyst Serv 20:69–81

    Article  Google Scholar 

  65. Wenzhöfer F, Glud RN (2002) Benthic carbon mineralization in the Atlantic: a synthesis based on in situ data from the last decade. Deep Sea Res I 49:1255–1279

    Article  Google Scholar 

  66. Wenzhöfer F, Holby O, Kohls O (2001) Deep penetrating benthic oxygen profiles measured in situ by oxygen optodes. Deep Sea Res I 48:1741–1755

    Article  Google Scholar 

  67. Wild C, Rasheed M, Jantzen C, Cook P, Struck U, Huettel M, Boetius A (2005) Benthic metabolism and degradation of natural particulate organic matter in carbonate and silicate reef sands of the northern Red Sea. Mar Ecol Prog Ser 298:69–78

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Shimon Feinstein (Ben-Gurion University of the Negev) and Viviana Bracha Farstey (IUI) for an opportunity to use their laboratory equipment. We are grateful to Asaph Rivlin, Sefi Baruch, Emanuel Sestieri, Shuki Isaacs, Ofir Hameiri, Yoav Lindeman, Shay Oron, Charlotte Wynn, Derya Akkaynak and Dmitri Churilov (IUI) for assistance with the field work and to Niva Levy, Hadar Cohen and Uriel Sinichkin for help with sample and data processing. Additionally, we would like to thank Peter Berg (University of Virginia) for sharing modeling software and helpful comments. This work was funded by Marie Curie Actions CIG PCIG10-GA-2011-303740 Grant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexey Kamyshny Jr..

Appendices

Appendix 1

Profiles of dissolved oxygen concentrations measured by microelectrodes and microoptodes in Eilat. For each sampling site, the upper graphs represent results for microelectrode measurements: (a) WS-15; (c) NS-17; (e) WS-45; (g) NS-45; (i) NS-250; (k) NS-306; (m) WS-427; (n) NS-449; (p) NS-561; (r) NS-700. The lower graphs represent results for microoptode measurements: (b) WS-15; (d) NS-17; (f) WS-45; (h) NS-45; (j) NS-250; (l) NS-306; (o) NS-449; (q) NS-561; (s) NS-700.

figurea

Appendix 2: Results of measurements and single-zone modeling for sediment cores measured by microelectrodes and microoptodes in Eilat

Site N profiles to < 1 µM O2 N profiles to ≤ 20 µM O2 DBL (J, µmol m−2 h−1) Sediment (Jlinear, µmol m−2 h−1) Sediment (Jparabolic, µmol m−2 h−1) Jl/Jp R (nM/s) O2 penetration depth, calculated (mm) O2 penetration depth, measured (mm) [O2]sed interface, calculated (µM) [O2]sed interface, measured (µM)
A. Microelectrodes
WS 15 m 2 1 256 ± 38 316 ± 21 473 ± 34 0.67 ± 0.01 46 ± 10 2.9 ± 0.5 2.5 ± 0.2 179 ± 16 167 ± 13
WS 45 m 3 0 242 ± 1 269 ± 32 392 ± 44 0.69 ± 0.01 42 ± 13 2.6 ± 0.5 2.4 ± 0.1 133 ± 40 136 ± 25
NS 250 m 2 1 61 ± 7 88 ± 6 140 ± 9 0.3 ± 0.01 3.7 ± 0.5 10.5 ± 0.7 10.4 ± 0.7 190 ± 1 189 ± 5
NS 306 m 3 0 56 ± 23 63 ± 2 101 ± 10 0.63 ± 0.01 1.9 ± 0.5 14.9 ± 2.2 13.2 ± 1.6 194 ± 11 191 ± 3
WS 427 m 2 0 34 ± 1 52 ± 3 71 ± 4 0.73 ± 0.00 1.1 ± 0.1 18.6 ± 0.4 20.6 ± 1.3 172 ± 7 181 ± 2
NS 449 m 3 0 76 ± 31 85 ± 9 121 ± 14 0.70 ± 0.00 2.9 ± 0.5 11.9 ± 1.1 12.2 ± 0.6 185 ± 10 182 ± 6
NS 561 m 3 0 106 ± 30 67 ± 2 106 ± 13 0.64 ± 0.06 2.4 ± 0.3 12.2 ± 0.2 10.7 ± 1.1 167 ± 14 169 ± 17
NS 700 m 3 0 64 ± 15 47 ± 5 75 ± 2 0.63 ± 0.09 1.2 ± 0.1 17 ± 1.6 15.7 ± 0.3 165 ± 11 173 ± 5
NS 17 m 2 1 160 ± 8 190 ± 14 277 ± 1 0.69 ± 0.05 21 ± 1 3.8 ± 0.3 2.7 ± 0.1 136 ± 10 138 ± 10
NS 45 m 3 0 260 ± 6 322 ± 1 326 ± 1 0.99 ± 0.00 26 ± 2 3.5 ± 0.2 2.1 ± 0.4 149 ± 11 143 ± 4
B. Microoptodes
WS 15 m 3 1 170 ± 27 143 ± 20 220 ± 25 0.66 ± 0.11 12 ± 4 5.4 ± 1.1 5.1 ± 0.8 151 ± 23 155 ± 15
WS 45 m 3 1 156 ± 11 220 ± 13 254 ± 22 0.87 ± 0.10 14 ± 3 5.4 ± 1.2 3.3 ± 0.7 160 ± 40 153 ± 25
NS 250 m 3 0 114 ± 16 107 ± 26 130 ± 36 0.83 ± 0.04 3.4 ± 1.5 11.2 ± 1.8 12.0 ± 1.5 185 ± 24 180 ± 14
NS 306 m 3 0 69 ± 26 97 ± 5 100 ± 10 0.98 ± 0.06 2.2 ± 0.4 12.5 ± 0.9 11.7 ± 0.3 161 ± 5 165 ± 4
WS 427 m n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
NS 449 m 3 0 126 ± 53 98 ± 26 103 ± 7 0.94 ± 0.18 2.3 ± 0.4 12.4 ± 1.4 11.5 ± 0.3 164 ± 7 164 ± 1
NS 561 m 3 0 103 ± 12 82 ± 10 94 ± 10 0.87 ± 0.02 2.0 ± 0.4 13.0 ± 1.2 11.1 ± 1.2 157 ± 1 156 ± 2
NS 700 m 3 0 30 ± 10 78 ± 9 74 ± 14 1.07 ± 0.10 1.2 ± 0.5 17.7 ± 3.2 17.3 ± 0.8 166 ± 2 168 ± 2
NS 17 m 2 1 125 ± 30 239 ± 98 358 ± 62 0.79 ± 0.08 23 ± 11 4.7 ± 1.6 3.1 ± 0.2 177 ± 14 156 ± 14
NS 45 m 3 1 142 ± 95 332 ± 100 515 ± 135 0.65 ± 0.11 47 ± 25 3.5 ± 1.1 2.2 ± 0.5 199 ± 18 149 ± 6

Appendix 3: Results of multiple-zone modeling for cores measured by microelectrodes and microoptodes in Eilat

Site Profile Zone Top interval (mm) Bottom interval (mm) Diffusive flux (J, µmol m−2 h−1) Integrated flux (J, µmol m−2 h−1) Consumption rates (R, nmol L−1 s−2) Integrated consumption rates (R, nmol L−1 s−2) [O2]sed interface, calculated (µmol L−1) [O2]sed interface, measured (µmol L−1)
A. Microelectrodes
WS 15 m 1 1 0.0 1.3 1 78 0.3 8.3 130 130
  2 1.3 2.6 77   16.4    
2 1 0.0 1.9 41 105 5.9 10.1 153 145
  2 1.9 2.9 64   18.5    
WS 45 m 1 1 0.0 0.5 31 131 17.3 14.6 149 137
  2 0.5 1.5 21   5.9    
  3 1.5 2.5 79   21.8    
2 1 0.0 0.5 178 268 107.7 32.4 160 135
  2 0.5 1.8 49   10.0    
  3 1.8 2.3 40   24.3    
NS 250 m 1 1 0.0 3.6 53 99 4.1 2.5 201 194
  2 3.6 5.4 8   1.3    
  3 5.4 10.9 37   1.9    
2 1 0.0 2.6 29 91 3.2 2.4 195 189
  2 2.6 5.2 23   2.4    
  3 5.2 10.4 39   2.1    
3 1 0.0 2.8 1 59 0.1 1.7 184 184
  2 2.8 8.4 40   2.0    
  3 8.4 9.9 18   3.5    
NS 306 m 1 1 0.0 7.2 8 47 0.3 0.9 198 189
  2 7.2 14.3 38   1.5    
2 1 0.0 10.8 27 63 1.3 1.4 192 193
  2 10.8 12.1 38   2.9    
3 1 0.0 3.3 3 46 0.2 1.0 171 167
  2 3.3 11.5 30   1.0    
  3 11.5 13.1 12   2.1    
WS 427 m 1 1 0.0 4.3 138 194 8.9 2.5 192 179
  2 4.3 8.6 36   2.3    
  3 8.6 21.5 20   0.4    
2 1 0.0 2.2 50 91 6.4 1.3 186 182
  2 2.2 4.3 7   0.9    
  3 4.3 19.6 34   0.6    
NS 449 m 1 1 0.0 2.1 7 66 0.9 1.4 183 177
  2 2.1 10.7 45   1.5    
  3 10.7 12.8 14   1.9    
2 1 0.0 7.2 70 92 2.7 2.1 190 181
  2 7.2 9.6 4   0.5    
  3 9.6 12.0 17   2.0    
3 1 0.0 3.9 8 73 0.6 1.7 192 189
  2 3.9 7.8 39   2.8    
  3 7.8 11.8 25   1.8    
NS 561 m 1 1 0.0 3.1 27 84 2.4 2.2 183 179
  2 3.1 9.2 36   1.6    
  3 9.2 10.8 19   3.9    
2 1 0.0 1.0 49 108 13.0 2.9 169 159
  2 1.0 9.4 40   1.3    
  3 9.4 10.5 26   5.1    
NS 700 m 1 1 0.0 1.6 45 102 7.9 1.8 171 167
  2 1.6 3.1 18   3.2    
  3 3.1 14.0 27   0.7    
  4 14.0 15.6 12   2.2    
2 1 0.0 10.6 31 55 0.8 1.0 180 175
  2 10.6 13.3 3   0.3    
  3 13.3 15.9 22   2.3    
3 1 0.0 3.1 87 122 7.8 2.2 183 176
  2 3.1 12.4 15   0.4    
  3 12.4 15.5 20   1.8    
NS 17 m 1 1 0.0 0.9 2 197 0.7 24.4 177 158
  2 0.9 2.3 195   40.1    
2 1 0.0 1.5 21 172 3.7 17.7 185 174
  2 1.5 2.7 152   36.5    
NS 45 m 1 1 0.0 1.2 65 233 14.9 40.1 161 146
  2 1.2 2.1 168   77.9    
2 1 0.0 1.3 0 174 0.0 21.2 147 131
  2 1.3 2.0 152   63.4    
B. Microoptodes
WS 15 m 1 1 0.0 2.0 0 87 0.0 4.0 178 170
  2 2.0 6.0 87   6.0    
2 1 0.0 1.7 71 125 11.9 4.2 174 165
  2 1.7 8.3 54   2.2    
3 1 0.0 3.5 67 107 5.3 6.8 150 144
  2 3.5 4.4 40   12.5    
4 1 0.0 1.9 117 163 17.0 9.4 146 139
  2 1.9 4.8 45   4.4    
WS 45 m 1 1 0.0 2.5 0 116 0.0 8.4 191 178
  2 2.5 3.8 116   25.3    
2 1 0.0 2.4 0 89 0.0 7.6 164 168
  2 2.4 3.3 89 0 30.6    
3 1 0.0 2.3 0 101 0.0 8.0 153 144
  2 2.3 3.5 101 0 23.9    
4 1 0.0 0.6 173 266 76.8 29.6 129 123
  2 0.6 1.9 12 0 2.8    
  3 1.9 2.5 81 0 35.9    
NS 250 m 1 1 0.0 4.4 43 73 2.8 1.6 167 164
  2 4.4 8.7 12   0.7    
  3 8.7 13.1 18   1.2    
2 1 0.0 3.1 14 65 1.2 1.4 196 190
  2 3.1 12.6 51   1.5    
3 1 0.0 3.3 0 77 0.0 2.2 196 186
  2 3.3 4.9 38   6.5    
  3 4.9 9.8 38   2.2    
NS 306 m 1 1 0.0 1.4 6 65 1.2 1.6 164 161
  2 1.4 2.9 23   4.5    
  3 2.9 10.1 18   0.7    
  4 10.1 11.5 18   3.5    
2 1 0.0 3.6 27 69 2.1 1.6 173 167
  2 3.6 12.1 42   1.4    
3 1 0.0 3.9 40 75 2.9 1.8 172 167
  2 3.9 9.6 16   0.8    
  3 9.6 11.6 18   2.6    
NS 449 m 1 1 0.0 1.4 36 106 7.1 2.6 169 162
  2 1.4 2.8 20   4.0    
  3 2.8 9.8 38   1.5    
  4 9.8 11.2 12   2.3    
2 1 0.0 4.3 0 53 0.0 1.3 168 164
  2 4.3 5.7 13   2.6    
  3 5.7 8.6 11   1.1    
  4 8.6 11.4 28   2.8    
3 1 0.0 1.3 18 78 3.8 1.9 171 164
  2 1.3 10.1 48   1.5    
  3 10.1 11.8 12   2.5    
NS 561 m 1 1 0.0 3.0 27 79 2.5 2.2 163 159
  2 3.0 9.1 33   1.5    
  3 9.1 10.1 188   5.2    
2 1 0.0 7.2 33 64 1.3 1.7 159 156
  2 7.2 9.0 5   0.7    
  3 9.0 10.8 26   4.0    
3 1 0.0 1.5 4 57 0.7 1.3 158 154
  2 1.5 10.8 38   1.1    
  3 10.8 12.4 15   2.7    
NS 700 m 1 1 0.0 2.9 22 63 2.1 1.0 173 170
  2 2.9 14.3 26   0.6    
  3 14.3 17.2 152   1.5    
2 1 0.0 3.0 31 67 2.9 1.0 174 169
  2 3.0 15.1 19   0.4    
  3 15.1 18.2 17   1.6    
3 1 0.0 6.7 45 70 1.9 1.2 172 165
  2 6.7 13.3 8   0.4    
  3 13.3 16.7 17   1.4    
NS 17 m 1 1 0.0 1.3 0 172 0.0 18.4 184 168
  2 1.3 2.6 172   36.8    
2 1 0.0 2.2 0 112 0.0 10.7 154 141
  2 2.2 2.9 112   42.8    
3 1 0.0 2.9 0 111 0.0 9.5 185 157
  2 2.9 3.3 111   85.8    
NS 45 m 1 1 0.0 1.2 65 233 14.9 35.9 161 149
  2 1.2 1.8 168   77.9    
2 1 0.0 2.2 0 129 0.0 13.7 154 153
  2 2.2 2.6 129   82.4    
3 1 0.0 1.5 0 121 0.0 16.8 152 151
  2 1.5 2.0 121   67.3    
4 1 0.0 1.4 0 160 0.0 21.1 156 140
  2 1.4 2.1 160   63.3    

Appendix 4: Results of measurements and single-zone modeling for sediment cores measured by microelectrodes and microoptodes in Beer Sheva

Site N profiles to < 1 µM O2 N profiles to ≤ 20 µM O2 DBL (J, µmol m−2 h−1) Sediment (Jlinear, µmol m−2 h−1) Sediment (Jparabolic, µmol m−2 h−1) Jl/Jp R (nM s−1) O2 penetration depth, calculated (mm) O2 penetration depth, measured (mm) [O2]sed interface, calculated (µM) [O2]sed interface, measured (µM)
A. Microelectrodes
NS 250 m 3 0 95 ± 12 81 ± 26 120 ± 5 0.68 ± 0.02 2.9 ± 0.2 11.3 ± 0.3 12.0 ± 0.1 176 ± 3 180 ± 3
NS 306 m 3 0 82 ± 4 64 ± 5 101 ± 2 0.64 ± 0.01 2.3 ± 0.1 12.4 ± 0.3 11.7 ± 0.3 162 ± 1 165 ± 1
NS 449 m 3 0 82 ± 16 66 ± 26 105 ± 13 0.63 ± 0.10 2.3 ± 0.6 13.0 ± 1.8 11.5 ± 1 177 ± 3 164 ± 5
NS 561 m 3 0 95 ± 9 84 ± 10 133 ± 28 0.63 ± 0.01 3.9 ± 1.5 10.0 ± 1.8 11 ± 2.3 169 ± 5 173 ± 4
NS 700 m 3 0 84 ± 4 52 ± 9 84 ± 8 0.62 ± 0.02 1.6 ± 0.3 15.2 ± 1.7 17.3 ± 0.9 165 ± 2 179 ± 5
B. Microoptodes
NS 250 m 3 0 72 ± 5 67 ± 3 102 ± 3 0.66 ± 0.03 2.2 ± 0.1 13.0 ± 0.3 11.1 ± 0.4 171 ± 3 165 ± 6
NS 306 m 3 0 45 ± 12 68 ± 6 93 ± 7 0.72 ± 0.04 1.8 ± 0.3 14.3 ± 1.3 13.3 ± 1.3 173 ± 5 168 ± 4
NS 449 m 3 0 153 ± 43 89 ± 10 106 ± 10 0.84 ± 0.05 2.7 ± 0.4 11.0 ± 0.8 11.4 ± 1.5 150 ± 4 156 ± 4
NS 561 m 4 0 54 ± 9 70 ± 6 110 ± 4 0.64 ± 0.07 2.6 ± 0.2 11.8 ± 0.4 10.6 ± 0.1 167 ± 1 162 ± 1
NS 700 m 3 0 272 ± 14 74 ± 6 88 ± 6 0.87 ± 0.01 2.2 ± 0.5 11.2 ± 3.2 13.5 ± 0.8 126 ± 10 154 ± 16

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boyko, V., Torfstein, A. & Kamyshny, A. Oxygen Consumption in Permeable and Cohesive Sediments of the Gulf of Aqaba. Aquat Geochem 24, 165–193 (2018). https://doi.org/10.1007/s10498-018-9338-x

Download citation

Keywords

  • Gulf of Aqaba
  • Sediment–water interface
  • Oxygen consumption
  • Oxygen penetration depth
  • Diffusive boundary layer
  • Microoptodes
  • Microelectrodes