Advertisement

Aquatic Geochemistry

, Volume 23, Issue 5–6, pp 299–313 | Cite as

Oxygen, Hydrogen, Boron and Lithium Isotope Data of a Natural Spring Water with an Extreme Composition: A Fluid from the Dehydrating Slab?

  • Tiziano Boschetti
  • Lorenzo Toscani
  • Paola Iacumin
  • Enricomaria Selmo
Original Article

Abstract

The chemical and isotope compositions of slab dehydration fluids from convergent margins have been theorized by many authors who have adopted several approaches. A direct collection of natural water is possible only in an oceanic environment, despite several difficulties in estimating the deepest component due to the mixing with seawater or hydrothermal fluids from the ridge. Accordingly, the study of melt inclusions is a valuable alternative. However, the latter mainly represents high temperature/pressure conditions in deep magmatic or metamorphic settings. Here, we present new H, O, Li and B isotope along with a revision of previously published chemical data from a potential natural example of slab dehydration water, sampled in a forearc region and affected by low-temperature metamorphism and serpentinization processes (Aqua de Ney, Northern California). Its extreme composition challenges the understanding of its origin and deep temperature, but this work is a further step on a topic of increasing interest for several scientists from different academic disciplines.

Keywords

Stable isotopes Serpentinization Extreme composition Slab fluids 

Notes

Acknowledgements

The authors would like to thank: J. Blank who furnished the samples and M. Wieser for the B isotope analysis; G. Etiope and P. Tomascack for their comments on the earlier versions of the manuscript; C. Monnin and two anonymous reviewers for their helpful remarks.

Supplementary material

10498_2017_9323_MOESM1_ESM.xlsx (19 kb)
Supplementary material 1 (XLSX 20 kb)
10498_2017_9323_MOESM2_ESM.docx (50 kb)
Supplementary material 2 (DOCX 51 kb)
10498_2017_9323_MOESM3_ESM.xls (34 kb)
Supplementary material 3 (XLS 35 kb)
10498_2017_9323_MOESM4_ESM.xls (40 kb)
Supplementary material 4 (XLS 40 kb)
10498_2017_9323_MOESM5_ESM.pdf (1.7 mb)
Supplementary material 5 (PDF 1736 kb)

References

  1. Alt JC, Shanks WC III (2006) Stable isotope compositions of serpentinite seamounts in the Mariana forearc: serpentinization processes, fluid sources and sulfur metasomatism. Earth Planet Sci Lett 242:272–285. doi: 10.1016/j.epsl.2005.11.063 CrossRefGoogle Scholar
  2. Awaleh MO, Boschetti T, Soubaneh YD., Baudron P, Kawalieh AD, Dabar OA, Ahmed MM, Ahmed SI, Daoud MA, Egueh NM, Mohamed J (2017) Geochemical study of the Sakalol-Harralol geothermal field (Republic of Djibouti): Evidences of a low enthalpy aquifer between Manda-Inakir and Asal rift settings. J Volcanol Geoth Res 331:26–52. doi: 10.1016/j.jvolgeores.2016.11.008.
  3. Barnes I (1972) Water-mineral reactions related to potential fluid-injection problems. In: Cook TD (ed) Underground waste management and environmental implications, vol AAPG memoir volume 18. AAPG Memoir, American Association of Petroleum Geologists, Tulsa, Oklahoma, USA, pp 294–297. doi: 10.1306/M18373C45
  4. Barnes I, Rapp JB, O’Neil JR (1972) Metamorphic assemblages and the direction of flow of metamorphic fluids in four instances of serpentinization. Contrib Miner Petrol 35:263–276CrossRefGoogle Scholar
  5. Beaudoin G, Therrien P (2009) The updated web stable isotope fractionation calculator. In: De Groot PA (ed) Handbook of stable isotope analytical techniques, vol II. Elsevier, Amsterdam, pp 1120–1122Google Scholar
  6. Benton LD, Ryan JG, Tera F (2001) Boron isotope systematics of slab fluids as inferred from a serpentine seamount, Mariana forearc. Earth Planet Sci Lett 187:273–282. doi: 10.1016/S0012-821X(01)00286-2 CrossRefGoogle Scholar
  7. Berkstresser CFJ (1968) Data for springs in the northern coast ranges and Klamath Mountains of California. United States, Department of Interior, Geological Survey, Water Resources Division, Menlo Park, CaliforniaGoogle Scholar
  8. Bethke CM, Yeakel S (2008) The geochemist’s workbench®—release 7. GWB Essentials Guide. Hydrogeology Program. University of Illinois, p 489Google Scholar
  9. Böhlke JK, Shanks III WC (1994) Stable isotope study of hydrothermal vents at Escanaba Trough: observed and calculated effects of sediment–seawater interaction. In: Morton JL, Zierenberg RA, Reiss CA (eds) Geologic, hydrothermal, and biologic studies at Escanaba Trough, Gorda Ridge, Offshore Northern California, vol U.S. Geological Survey Bulletin 2022. U.S. Department of the Interior, U.S. Geological Survey, Denver, CO, pp 223–255Google Scholar
  10. Boschetti T, Cortecci G, Bolognesi L (2003) Chemical and isotopic study of the shallow groundwater system of Vulcano Island, Aeolian Archipelago, Italy: an update. GeoActa 2:1–34Google Scholar
  11. Boschetti T, Toscani L (2008) Springs and streams of the Taro-Ceno Valleys (Northern Apennine, Italy): reaction path modeling of waters interacting with serpentinized ultramafic rocks. Chem Geol 257:76–91. doi: 10.1016/j.chemgeo.2008.08.017 CrossRefGoogle Scholar
  12. Boschetti T, Toscani L, Shouakar-Stash O, Iacumin P, Venturelli G, Mucchino C, Frape SK (2011) Salt waters of the Northern Apennine Foredeep Basin (Italy): origin and evolution. Aquat Geochem 17:71–108. doi: 10.1007/s10498-010-9107-y CrossRefGoogle Scholar
  13. Boschetti T, Etiope G, Pennisi M, Romain M, Toscani L (2013a) Boron, lithium and methane isotope composition of hyperalkaline waters (Northern Apennines, Italy): terrestrial serpentinization or mixing with brine? Appl Geochem 32:17–25. doi: 10.1016/j.apgeochem.2012.08.018 CrossRefGoogle Scholar
  14. Boschetti T, Etiope G, Toscani L (2013b) Abiotic methane in the hyperalkaline springs of Genova, Italy. Procedia Earth Planet Sci 7:248–251. doi: 10.1016/j.proeps.2013.02.004 CrossRefGoogle Scholar
  15. Boschetti T, Toscani L, Salvioli Mariani E (2015) Boron isotope geochemistry of Na-bicarbonate, Na-chloride, and Ca-chloride waters from the Northern Apennine Foredeep basin: other pieces of the sedimentary basin puzzle. Geofluids 15:546–562. doi: 10.1111/gfl.12124 CrossRefGoogle Scholar
  16. Boschetti T, Angulo B, Cabrera F, Vásquez J, Montero RL (2016) Hydrogeochemical characterization of oilfield waters from southeast Maracaibo Basin (Venezuela): diagenetic effects on chemical and isotopic composition. Mar Pet Geol 73:228–248. doi: 10.1016/j.marpetgeo.2016.02.020 CrossRefGoogle Scholar
  17. Butterfield DA, McDuff RE, Franklin J, Wheat CG (1994) Geochemistry of hydrothermal vent fluids from Middle Valley, Juan de Fuca Ridge. In: Mottl MJ, Davis EE, Fisher AT, Slack JF (eds) Proceedings of the ocean drilling program. Scientific results, pp 395–410Google Scholar
  18. Campbell AC, German CR, Palmer MR, Gamo T, Edmond JM (1994) Chemistry of hydrothermal fluids from the Escanaba Trough, Gorda Ridge. Geologic, hydrothermal and biologic studies at Escanaba Trough, Gorda Ridge, Offshore Northern California. In: Morton JL, Zierenberg RA, Reiss CA (eds) Geologic, hydrothermal, and biologic studies at Escanaba Trough, Gorda Ridge, Offshore Northern California, vol U.S. Geological Survey Bulletin 2022. U.S. Department of the Interior, U.S. Geological Survey, pp 201–221Google Scholar
  19. Churchill RK, Hill RL (2000) A general location guide for ultramafic rocks in California—areas more likely to contain naturally occurring asbestos. Department of Conservation, Division of Mines and GeologyGoogle Scholar
  20. Clayton RN, Mayeda TK (1999) Oxygen isotope studies of carbonaceous chondrites. Geochim Cosmochim Acta 63:2089–2104. doi: 10.1016/S0016-7037(99)00090-3 CrossRefGoogle Scholar
  21. Clog M, Aubaud C, Cartigny P, Dosso L (2013) The hydrogen isotopic composition and water content of southern Pacific MORB: a reassessment of the D/H ratio of the depleted mantle reservoir. Earth Planet Sci Lett 381:156–165. doi: 10.1016/j.epsl.2013.08.043 CrossRefGoogle Scholar
  22. Cortecci G, Boschetti T, Mussi M, Herrera Lameli C, Mucchino C, Barbieri M (2005) New chemical and isotopic data on waters of El Tatio geothermal field, Northern Chile. Geochem J 39:547–571. doi: 10.2343/geochemj.39.547 CrossRefGoogle Scholar
  23. Croghan C, Egeghy PP (2003) Methods of dealing with values below the limit of detection using SAS. Paper presented at the Southeastern SAS User Group, St. Petersburg, FLGoogle Scholar
  24. Cullen JT (2013) Halogen chemistry and stable chlorine isotope composition of thermal springs and arc lavas in the Cascade Arc. The University of Texas at AustinGoogle Scholar
  25. Cullen JT, Barnes JD, Hurwitz S, Leeman WP (2015) Tracing chlorine sources of thermal and mineral springs along and across the Cascade Range using halogen concentrations and chlorine isotope compositions. Earth Planet Sci Lett 426:225–234. doi: 10.1016/j.epsl.2015.06.052 CrossRefGoogle Scholar
  26. Decitre S, Buatier M, James R (2004) Li and Li isotopic composition of hydrothermally altered sediments at Middle Valley, Juan De Fuca. Chem Geol 211:363–373. doi: 10.1016/j.chemgeo.2004.07.005 CrossRefGoogle Scholar
  27. Elder D, Cashman SM (1992) Tectonic control and fluid evolution in the Quartz Hill, California, lode gold deposits. Econ Geol 87:1795–1812CrossRefGoogle Scholar
  28. Feth JH, Rogers SM, Roberson CE (1961) Aqua de Ney, California, a spring of unique chemical character. Geochim Cosmochim Acta 22:75–86. doi: 10.1016/0016-7037(61)90107-7 CrossRefGoogle Scholar
  29. Fischer TP, Hilton DR, Zimmer MM, Shaw AM, Sharp ZD, Walker JA (2002) Subduction and recycling of nitrogen along the Central American margin. Science 297:1154–1157. doi: 10.1126/science.1073995 CrossRefGoogle Scholar
  30. Fouquet Y et al (1998) Escanaba Trough: Central Hill (Site 1038). In: Proceedings ocean drilling program, initial reports, shipboard scientific party, College Station, TX, pp 253–298Google Scholar
  31. Frost BR, Beard JS (2007) On silica activity and serpentinization. J Petrol 48:1351–1368. doi: 10.1093/petrology/egm021 CrossRefGoogle Scholar
  32. Fuis GS, Zucca JJ, Mooney WD, Milkereit B (1987) A geologic interpretation of seismic-refraction results in northeastern California. Geol Soc Am Bull 98:53–65. doi: 10.1130/0016-7606(1987)98<53:AGIOSR>2.0.CO;2 CrossRefGoogle Scholar
  33. García-Ruiz JM, Nakouzi E, Kotopoulou E, Tamborrino L, Steinbock O (2017) Biomimetic mineral self-organization from silica-rich spring waters. Sci Adv 3:e1602285. doi: 10.1126/sciadv.1602285 CrossRefGoogle Scholar
  34. Gieskes JM, Mahn C, Schnetzger B (2000) Data report: trace element geochemistry of I, Br, F, H3PO4, Ba, and Mn in pore waters of the Escanaba Trough, Sites 1037 and 1038. In: Zierenberg RA, Fouquet Y, Miller DJ, Normark WR (eds) Proceedings ocean drilling program, scientific results, Texas A&M University, College Station, TX, pp 1–16Google Scholar
  35. Giggenbach WF (1996) Chemical composition of volcanic gases. In: Scarpa R, Tilling RI (eds) Monitoring and mitigation of volcano hazards. Springer, Berlin, pp 221–256CrossRefGoogle Scholar
  36. Goff F, Bergfeld D, Janik CJ, Counce D, Stimac JA (2001) Geochemical data on waters, gases, rocks, and sediments from the Geysers–Clear Lake region, California (1991–2000) vol LA-13882-MS. Los Alamos National Laboratory, Los Alamos, NMGoogle Scholar
  37. Gourcy LL, Groening M, Aggarwal PK (2007) Stable oxygen and hydrogen isotopes in precipitation. In: Aggarwal PK, Gat JR, Froehlich KFO (eds) Isotopes in the water cycle: past, present and future of developing science. Springer, Dordrecht, The Netherlands, pp 39–51Google Scholar
  38. Hansen CT, Meixner A, Kasemann SA, Bach W (2017) New insight on Li and B isotope fractionation during serpentinization derived from batch reaction investigations. Geochim Cosmochim Acta 217:51–79. doi: 10.1016/j.gca.2017.08.014 CrossRefGoogle Scholar
  39. Hurwitz S, Mariner RH, Fehn U, Snyder GT (2005) Systematics of halogen elements and their radioisotopes in thermal springs of the Cascade Range, Central Oregon, Western USA. Earth Planet Sci Lett 235:700–714. doi: 10.1016/j.epsl.2005.04.029 CrossRefGoogle Scholar
  40. James RH, Allen DE, Seyfried WE (2003) An experimental study of alteration of oceanic crust and terrigenous sediments at moderate temperatures (51 to 350 °C): insights as to chemical processes in near-shore ridge-flank hydrothermal systems. Geochim Cosmochim Acta 67:681–691. doi: 10.1016/S0016-7037(02)01113-4 CrossRefGoogle Scholar
  41. Johnson CA, Harlow GE (1999) Guatemala jadeitites and albitites were formed by deuterium-rich serpentinizing fluids deep within a subduction zone. Geology 27:629–632. doi: 10.1130/0091-7613(1999)027<0629:GJAAWF>2.3.CO;2 CrossRefGoogle Scholar
  42. Kong XZ, Tutolo BM, Saar MO (2013) DBCreate: a SUPCRT92-based program for producing EQ3/6, TOUGHREACT, and GWB thermodynamic databases at user-defined T and P. Comput Geosci 51:415–417. doi: 10.1016/j.cageo.2012.08.004 CrossRefGoogle Scholar
  43. Le Roux PJ, Shirey SB, Hauri EH, Perfit MR (2003) Boron isotope compositions of selected fresh MORB glasses from the northern EPR (8-10° N): implications for MORB magma contamination. American Geophysical Union, Fall Meeting 2003, abstract #V51A-03. http://adsabs.harvard.edu/abs/2003AGUFM.V51A..03L
  44. Le Voyer M, Rose-Koga EF, Shimizu N, Grove TL, Schiano P (2010) Two contrasting H2O-rich components in primary melt inclusions from Mount Shasta. J Petrol 51:1571–1595. doi: 10.1093/petrology/egq030 CrossRefGoogle Scholar
  45. Lee CTA, Oka M, Luffi P, Agranier A (2008) Internal distribution of Li and B in serpentinites from the Feather River Ophiolite, California, based on laser ablation inductively coupled plasma mass spectrometry. Geochem Geophys Geosyst 9:Q12011. doi: 10.1029/2008GC002078 Google Scholar
  46. Leeman WP, Tonarini S, Chan LH, Borg LE (2004) Boron and lithium isotopic variations in a hot subduction zone—the southern Washington Cascades. Chem Geol 212:101–124. doi: 10.1016/j.chemgeo.2004.08.010 CrossRefGoogle Scholar
  47. Liakhovitch V, Quick JE, Gregory RT (2005) Hydrogen and oxygen isotope constraints on hydrothermal alteration of the Trinity peridotite, Klamath Mountains, California. Int Geol Rev 47:203–214. doi: 10.2747/0020-6814.47.2.203 CrossRefGoogle Scholar
  48. Lu FH (2016) How long is enough: CO2-H2O equilibration for δ18O analysis in saline formation waters? Rapid Commun Mass Spectrom 30:1647–1652. doi: 10.1002/rcm.7599
  49. Lui-Heung C, Savov IP, Ryan JG (2007) Lithium isotope study of peridotite-slab fluid interactions in the Mariana forearc mantle wedge. In: American Geophysical Union, Fall Meeting 2007, abstract #V43A-03Google Scholar
  50. Lundstrom CC, Chaussidon M, Hsui AT, Kelemen P, Zimmerman M (2005) Observations of Li isotopic variations in the Trinity Ophiolite: evidence for isotopic fractionation by diffusion during mantle melting. Geochim Cosmochim Acta 69:735–751. doi: 10.1016/j.gca.2004.08.004 CrossRefGoogle Scholar
  51. Magna T, Wiechert U, Grove TL, Halliday AN (2006) Lithium isotope fractionation in the southern Cascadia subduction zone. Earth Planet Sci Lett 250:428–443. doi: 10.1016/j.epsl.2006.08.019 CrossRefGoogle Scholar
  52. Manning CE (2004) The chemistry of subduction-zone fluids. Earth Planet Sci Lett 233:1–16. doi: 10.1016/j.epsl.2004.04.030 CrossRefGoogle Scholar
  53. Mariner RH, Evans WC, Huebner M (1998) Preliminary chemical and isotopic data for waters from springs and wells on and near medicine Lake Volcano, Cascade Range, Northern California. U.S. Geological Survey, Menlo Park, CaliforniaGoogle Scholar
  54. Mariner RH, Evans WC, Presser TS, White LD (2003) Excess nitrogen in selected thermal and mineral springs of the Cascade Range in northern California, Oregon, and Washington: sedimentary or volcanic in origin? J Volcanol Geoth Res 121:99–114. doi: 10.1016/S0377-0273(02)00414-6 CrossRefGoogle Scholar
  55. Mariner RH, Venezky DY, Hurwitz S (2006) Chemical and isotopic database of water and gas from hydrothermal systems with an emphasis for the western United StatesGoogle Scholar
  56. Marschall HR, von Strandmann PAP, Seitz HM, Elliott T, Niu Y (2007) The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth Planet Sci Lett 262:563–580. doi: 10.1016/j.epsl.2007.08.005 CrossRefGoogle Scholar
  57. Martin E, Bindeman I, Grove TL (2011) The origin of high-Mg magmas in Mt Shasta and Medicine Lake volcanoes, Cascade Arc (California): higher and lower than mantle oxygen isotope signatures attributed to current and past subduction. Contrib Miner Petrol 162:945–960. doi: 10.1007/s00410-011-0633-4 CrossRefGoogle Scholar
  58. McCollom TM, Bach W (2009) Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim Cosmochim Acta 73:856–875. doi: 10.1016/j.gca.2008.10.032 CrossRefGoogle Scholar
  59. McCollom TM, Seewald JS, German CR (2015) Investigation of extractable organic compounds in deep-sea hydrothermal vent fluids along the Mid-Atlantic Ridge. Geochim Cosmochim Acta 156:122–144. doi: 10.1016/j.gca.2015.02.022 CrossRefGoogle Scholar
  60. McCrory PA, Blair JL, Waldhauser F, Oppenheimer DH (2012) Juan de Fuca slab geometry and its relation to Wadati–Benioff zone seismicity. J Geophys Res Solid Earth. doi: 10.1029/2012JB009407 Google Scholar
  61. Meyer-Dombard DR, Woycheese KM, Yargıçoğlu EN, Cardace D, Shock EL, Güleçal-Pektas Y, Temel M (2015) High pH microbial ecosystems in a newly discovered, ephemeral, serpentinizing fluid seep at Yanartaş (Chimera), Turkey. Front Microbiol 5:1–13. doi: 10.3389/fmicb.2014.00723 CrossRefGoogle Scholar
  62. Mitchell EC et al (2010) Nitrogen sources and recycling at subduction zones: insights from the Izu–Bonin–Mariana arc. Geochem Geophys Geosyst. doi: 10.1029/2009GC002783 Google Scholar
  63. Monnin C et al (2014) Fluid chemistry of the low temperature hyperalkaline hydrothermal system of Prony Bay (New Caledonia). Biogeosciences 11:5687. doi: 10.5194/bg-11-5687-2014 CrossRefGoogle Scholar
  64. Morishita T, Arai S, Ishida Y (2007) Trace element compositions of jadeite (+omphacite) in jadeitites from the Itoigawa-Ohmi district, Japan: implications for fluid processes in subduction zones. Isl Arc 16:40–56. doi: 10.1111/j.1440-1738.2007.00557.x CrossRefGoogle Scholar
  65. Morrill PL, Kuenen JG, Johnson OJ, Suzuki S, Rietze A, Sessions AL, Nealson KH (2013) Geochemistry and geobiology of a present-day serpentinization site in California: the Cedars. Geochim Cosmochim Acta 109:222–240. doi: 10.1016/j.gca.2013.01.043 CrossRefGoogle Scholar
  66. Mottl MJ (2009) Highest pH? Geochemical News 141. https://www.geochemsoc.org/publications/geochemicalnews/gn141oct09/highestph/. Accessed 17 Sep 2017
  67. Nathenson M, Thompson JM, White LD (2003) Slightly thermal springs and non-thermal springs at Mount Shasta, California: chemistry and recharge elevations. J Volcanol Geoth Res 121:137–153. doi: 10.1016/S0377-0273(02)00426-2 CrossRefGoogle Scholar
  68. Paris G, Gaillardet J, Louvat P (2010) Geological evolution of seawater boron isotopic composition recorded in evaporites. Geology 38:1035–1038. doi: 10.1130/G31321.1 CrossRefGoogle Scholar
  69. Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. geological survey techniques and methods, book 6, chap. A43, p 497. http://pubs.usgs.gov/tm/06/a43/
  70. Peacock SM (1987) Serpentinization and infiltration metasomatism in the Trinity peridotite, Klamath province, northern California: implications for subduction zones. Contrib Miner Petrol 95:55–70. doi: 10.1007/BF00518030 CrossRefGoogle Scholar
  71. Peacock SM, Hervig RL (1999) Boron isotopic composition of subduction-zone metamorphic rocks. Chem Geol 160:281–290. doi: 10.1016/S0009-2541(99)00103-5 CrossRefGoogle Scholar
  72. Peters EK (1993) D-18O enriched waters of the Coast Range Mountains, northern California: connate and ore-forming fluids. Geochim Cosmochim Acta 57:1093–1104. doi: 10.1016/0016-7037(93)90043-V CrossRefGoogle Scholar
  73. Rosner M, Erzinger J, Franz G, Trumbull RB (2003) Slab-derived boron isotope signatures in arc volcanic rocks from the Central Andes and evidence for boron isotope fractionation during progressive slab dehydration. Geochem Geophys Geosyst. doi: 10.1029/2002GC000438 Google Scholar
  74. Saccocia PJ, Seewald JS, Shanks WC (2009) Oxygen and hydrogen isotope fractionation in serpentine–water and talc–water systems from 250 to 450 °C, 50 MPa. Geochim Cosmochim Acta 73:6789–6804. doi: 10.1016/j.gca.2009.07.036 CrossRefGoogle Scholar
  75. Sadofsky SJ, Bebout GE (2004) Nitrogen geochemistry of subducting sediments: new results from the Izu–Bonin–Mariana margin and insights regarding global nitrogen subduction. Geochem Geophys Geosyst. doi: 10.1029/2003GC000543 Google Scholar
  76. Sánchez-Murillo R, Gazel E, Schwarzenbach EM, Crespo-Medina M, Schrenk MO, Boll J, Gill BC (2014) Geochemical evidence for active tropical serpentinization in the Santa Elena Ophiolite, Costa Rica: an analog of a humid early Earth? Geochem Geophys Geosyst 15:1783–1800. doi: 10.1002/2013GC005213 CrossRefGoogle Scholar
  77. Sanjuan B, Millot R, Asmundsson R, Brach M, Giroud N (2014) Use of two new Na/Li geothermometric relationships for geothermal fluids in volcanic environments. Chem Geol 389:60–81. doi: 10.1016/j.chemgeo.2014.09.011 CrossRefGoogle Scholar
  78. Sano T, Miyoshi M, Ingle S, Banerjee NR, Ishimoto M, Fukuoka T (2008) Boron and chlorine contents of upper oceanic crust: basement samples from IODP Hole 1256D. Geochem Geophys Geosyst. doi: 10.1029/2008GC002182 Google Scholar
  79. Schoeller H (1962) Les Eaux Souterraines. Hydrologie dynamique et chimique, Recherche, Exploitation et Évaluation des Ressources, ParisGoogle Scholar
  80. Sekine Y et al (2015) High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nat Commun 6:8604. doi: 10.1038/ncomms9604. http://www.nature.com/articles/ncomms9604#supplementary-information
  81. Shanks III WC (2001) Stable isotopes in seafloor hydrothermal systems: vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. In: Valley JW, Cole D (eds) Stable isotope geochemistry—reviews in mineralogy and geochemistry 43, vol 1. Mineralogical Society of America, pp 469–525Google Scholar
  82. Snoke AW, Barnes CG (2006) The development of tectonic concepts for the Klamath Mountains province, California and Oregon. In: Snoke AW, Barnes CG (eds) Geological studies in the Klamath Mountains province, California and Oregon: a volume in honor of William P. Irwin, vol Geological Society of America Special Papers 410. Geological Society of America, pp 1–29. doi: 10.1130/2006.2410(01)
  83. Souza KA, Deal PH, Mack HM, Turnbill CE (1974) Growth and reproduction of microorganisms under extremely alkaline conditions. Appl Microbiol 28:1066–1068Google Scholar
  84. Sturchio NC, Abrajano TA, Murowchick JB, Muehlenbachs K (1989) Serpentinization of the Acoje massif, Zambales ophiolite, Philippines: hydrogen and oxygen isotope geochemistry. Tectonophysics 168:101–107. doi: 10.1016/0040-1951(89)90370-3 CrossRefGoogle Scholar
  85. Tomascak PB, Magna T, Dohmen R (2016) Advances in lithium isotope geochemistry. Springer, BerlinCrossRefGoogle Scholar
  86. Vengosh A (2014) Salinization and saline environments. In: Sherwood Lollar B (ed) Treatise on geochemistry, 2nd edn, vol 11: environmental geochemistry. Elsevier, pp 325–378. doi: 10.1016/B978-0-08-095975-7.00909-8
  87. Verma SP, Santoyo E (1997) New improved equations for Na/K, Na/Li and SiO2 geothermometers by outlier detection and rejection. J Volcanol Geoth Res 79:9–23. doi: 10.1016/S0377-0273(97)00024-3 CrossRefGoogle Scholar
  88. Vigier N, Decarreau A, Millot R, Carignan J, Petit S, France-Lanord C (2008) Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle. Geochim Cosmochim Acta 72:780–792. doi: 10.1016/j.gca.2007.11.011 CrossRefGoogle Scholar
  89. Vils F, Tonarini S, Kalt A, Seitz HM (2009) Boron, lithium and strontium isotopes as tracers of seawater–serpentinite interaction at Mid-Atlantic ridge, ODP Leg 209. Earth Planet Sci Lett 286:414–425. doi: 10.1016/j.epsl.2009.07.005 CrossRefGoogle Scholar
  90. Von Damm KL, Parker CM, Zierenberg RA, Lilley MD, Olson EJ, Clague DA, McClain JS (2005) The Escanaba Trough, Gorda Ridge hydrothermal system: temporal stability and subseafloor complexity. Geochim Cosmochim Acta 69:4971–4984. doi: 10.1016/j.gca.2005.04.018 CrossRefGoogle Scholar
  91. Walowski KJ, Wallace PJ, Hauri EH, Wada I, Clynne MA (2015) Slab melting beneath the Cascade Arc driven by dehydration of altered oceanic peridotite. Nat Geosci 8:404–408. doi: 10.1038/ngeo2417 CrossRefGoogle Scholar
  92. Warren JM, Hauri EH (2014) Pyroxenes as tracers of mantle water variations. J Geophys Res Solid Earth 119:1851–1881. doi: 10.1002/2013JB010328 CrossRefGoogle Scholar
  93. White WM (2015) Isotope geochemistry. Wiley, New YorkGoogle Scholar
  94. White DE, Hem JD, Waring GA (1963) Chapter F. Chemical composition of subsurface waters. In: Fleischer M (ed) Data of geochemistry, 6th edn. U.S. Government Printing Office, Geological Survey Professional Paper 440-F, WashingtonGoogle Scholar
  95. Wilson JC (2010) A new polymer model for estimating Gibbs free energy of formation (ΔGF) of 7, 10 and 14 Å phyllosilicates at 25 °C, 1 Bar. Paper presented at the clays in natural and engineered barriers for radioactive waste confinement—4th international meeting, Nantes (France)Google Scholar
  96. Wolery TW, Jarek RL (2003) EQ3/6, version 8.0—software user’s manual. Civilian radioactive waste, management system, management and operating contractor, Sandia National Laboratories, Albuquerque, New MexicoGoogle Scholar
  97. Wunder B, Meixner A, Romer RL, Wirth R, Heinrich W (2005) The geochemical cycle of boron: constraints from boron isotope partitioning experiments between mica and fluid. Lithos 84:206–216. doi: 10.1016/j.lithos.2005.02.003 CrossRefGoogle Scholar
  98. Zack T, Tomascak PB, Rudnick RL, Dalpé C, McDonough WF (2003) Extremely light Li in orogenic eclogites: the role of isotope fractionation during dehydration in subducted oceanic crust. Earth Planet Sci Lett 208:279–290. doi: 10.1016/S0012-821X(03)00035-9 CrossRefGoogle Scholar
  99. Zhu Y, Shi B, Fang C (2000) The isotopic compositions of molecular nitrogen: implications on their origins in natural gas accumulations. Chem Geol 164:321–330. doi: 10.1016/S0009-2541(99)00151-5 CrossRefGoogle Scholar
  100. Wunder B, Deschamps F, Watenphul A, Guillot S, Meixner A, Romer RL, Wirth R (2010) The effect of chrysotile nanotubes on the serpentine-fluid Li-isotopic fractionation. Contrib Mineral Petrol 159:781–790. doi: 10.1007/s00410-009-0454-x CrossRefGoogle Scholar
  101. Wunder B, Meixner A, Romer RL, Feenstra A, Schettler G, Heinrich W (2007) Lithium isotope fractionation between Li-bearing staurolite, Li-mica and aqueous fluids: an experimental study. Chem Geol 238:277–290. doi: 10.1016/j.chemgeo.2006.12.001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly

Personalised recommendations