Evolution of Mg/Ca Ratios During Limestone Dissolution Under Epikarstic Conditions

Abstract

The Mg/Ca ratios in karst water are generally believed to comprise information on climate, and, being encoded in speleothems, they are utilized as paleoenvironmental proxy. However, the mechanism and dynamic of Mg release from limestone during dissolution is not well understood. A theoretical evolution of the Mg/Ca ratios during limestone dissolution under epikarstic conditions (T = 10 °C, \(\log P_{{{\text{CO}}_{2} }}\) = −1.5) was studied via a dynamic model. The results were compared with (1) the dripwater data set collected in Punkva Caves (Moravian Karst, Czech Republic) during one-year period and (2) the published data from various locations worldwide. The modeling showed that the Mg/Ca ratios are governed by composition of Mg-calcite present in limestone. Two distinct stages in the dissolution dynamics were recognized: (1) an initial congruent dissolution with stoichiometric release of Ca and Mg and, subsequently, (2) an incongruent dissolution demonstrated by the gradual release of Mg with simultaneous Ca decrease via calcite precipitation. Additional identified factors influencing the reaction path and Mg/Ca ratio evolution were the dolomitic component of limestone and the ratio of limestone/solution boundary area to water volume. Finally, the water–rock interaction time controls the resulting Mg/Ca ratio in dripwater determining how far the dissolution proceeds along the reaction path. Thus, the study results indicate that Mg/Ca ratio depends on many factors in addition to climatic variables.

This is a preview of subscription content, access via your institution.

Fig. 1

(based on Hromas et al 2009)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Baldini JUL, McDermott F, Baldini LM et al (2012) Identifying short-term and seasonal trends in cave drip water trace element concentrations based on a daily-scale automatically collected drip water dataset. Chem Geol 330–331:1–16. doi:10.1016/j.chemgeo.2012.08.009

    Article  Google Scholar 

  2. Bischoff WD (1998) Dissolution enthalpies of magnesian calcites. Aquat Geochem 4:321–336. doi:10.1023/A:1009684214945

    Article  Google Scholar 

  3. Blecha M, Faimon J (2014) Spatial and temporal variations in carbon dioxide (CO2) concentrations in selected soils of the Moravian Karst (Czech Republic). Carbonates Evaporites 29:395–408. doi:10.1007/s13146-014-0220-7

    Article  Google Scholar 

  4. Busenberg E, Plummer LN (1982) The kinetics of dissolution of dolomite in CO2–H2O systems at 1.5 to 65 °C and 0 to 1 atm PCO2. Am J Sci 282:45–78

    Article  Google Scholar 

  5. Casteel RC, Banner JL (2015) Temperature-driven seasonal calcite growth and dripwater trace element variations in a well-ventilated Texas cave: implications for speleothem paleoclimate studies. Chem Geol 392:43–58. doi:10.1016/j.chemgeo.2014.11.002

    Article  Google Scholar 

  6. Chou L, Garrels RM, Wollast R (1989) Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. Chem Geol 78:269–282. doi:10.1016/0009-2541(89)90063-6

    Article  Google Scholar 

  7. Cruz FW, Burns SJ, Jercinovic M et al (2007) Evidence of rainfall variations in Southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite. Geochim Cosmochim Acta 71:2250–2263. doi:10.1016/j.gca.2007.02.005

    Article  Google Scholar 

  8. Dreybrodt W, Eisenlohr L (2000) Limestone dissolution rates in karst environments. In: Klimchouk AB et al (eds) Speleogenesis evolution of karst aquifers. National speleological society, Huntsville, pp 136–147

    Google Scholar 

  9. Faimon J, Ličbinská M, Zajíček P, Sracek O (2012) Partial pressures of CO2 in epikarstic zone deduced from hydrogeochemistry of permanent drips, the Moravian Karst, Czech Republic. Acta Carsol 41(1):47–57

    Google Scholar 

  10. Faimon J, Bodláková R, Pracný P, Hebelka J (2016) Transfer of climatic variables by dripwater: a case study from Kateřinská Cave (Moravian Karst). Environ Earth Sci 75:1151. doi:10.1007/s12665-016-5982-x

    Article  Google Scholar 

  11. Fairchild IJ, Treble PC (2009) Trace elements in speleothems as recorders of environmental change. Quat Sci Rev 28:449–468. doi:10.1016/j.quascirev.2008.11.007

    Article  Google Scholar 

  12. Fairchild IJ, Borsato A, Tooth AF et al (2000) Controls on trace element (Sr–Mg) compositions of carbonate cave waters: implications for speleothem climatic records. Chem Geol 166:255–269. doi:10.1016/S0009-2541(99)00216-8

    Article  Google Scholar 

  13. Fairchild IJ, Smith CL, Baker A et al (2006a) Modification and preservation of environmental signals in speleothems. Earth Sci Rev 75:105–153. doi:10.1016/j.earscirev.2005.08.003

    Article  Google Scholar 

  14. Fairchild IJ, Tuckwell GW, Baker A, Tooth AF (2006b) Modelling of dripwater hydrology and hydrogeochemistry in a weakly karstified aquifer (Bath, UK): implications for climate change studies. J Hydrol 321:213–231. doi:10.1016/j.jhydrol.2005.08.002

    Article  Google Scholar 

  15. Fookes PG, Hawkins AB (1988) Limestone weathering: its engineering significance and a proposed classification scheme. Q J Eng Geol Hydrogeol 21:7–31. doi:10.1144/GSL.QJEG.1988.021.01.02

    Article  Google Scholar 

  16. Frisia S, Borsato A, Drysdale RN et al (2012) A re-evaluation of the palaeoclimatic significance of phosphorus variability in speleothems revealed by high-resolution synchrotron micro XRF mapping. Clim Past 8:2039–2051. doi:10.5194/cp-8-2039-2012

    Article  Google Scholar 

  17. Gabrovsek F, Romanov D, Dreybrodt W (2004) Early karstification in a dual-fracture aquifer: the role of exchange flow between prominent fractures and a dense net of fissures. J Hydrol 299:45–66. doi:10.1016/j.jhydrol.2004.02.005

    Article  Google Scholar 

  18. Harned HS, Davis R (1943) The ionization constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous salt solutions from 0 to 50°. J Am Chem Soc 65:2030–2037. doi:10.1021/ja01250a059

    Article  Google Scholar 

  19. Harned HS, Scholes SR (1941) The ionization constant of HCO3− from 0 to 50°. J Am Chem Soc 63:1706–1709. doi:10.1021/ja01851a058

    Article  Google Scholar 

  20. Hromas J et al. (ed) (2009) Jeskyně. In: Mackovčin P, Sedláček M (eds) Chráněná území ČR, svazek XIV. AOPK and ECB, Praha

  21. Huang Y, Fairchild IJ (2001) Partitioning of Sr2+ and Mg2+ into calcite under karst-analogue experimental conditions. Geochim Cosmochim Acta 65:47–62. doi:10.1016/S0016-7037(00)00513-5

    Article  Google Scholar 

  22. Immenhauser A, Buhl D, Richter D et al (2010) Magnesium-isotope fractionation during low-Mg calcite precipitation in a limestone cave—field study and experiments. Geochim Cosmochim Acta 74:4346–4364. doi:10.1016/j.gca.2010.05.006

    Article  Google Scholar 

  23. Jochum KP, Scholz D, Stoll B et al (2012) Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS. Chem Geol 318–319:31–44. doi:10.1016/j.chemgeo.2012.05.009

    Article  Google Scholar 

  24. Kamas J, Bruthans J, Vysoka H, Kovařík M (2015) Range of horizontal transport and residence time of nitrate in a mature karst vadose zone. Int J Speleol 44:49–59. doi:10.5038/1827-806X.44.1.5

    Article  Google Scholar 

  25. Kaufmann G, Romanov D, Hiller T (2010) Modeling three-dimensional karst aquifer evolution using different matrix-flow contributions. J Hydrol 388:241–250. doi:10.1016/j.jhydrol.2010.05.001

    Article  Google Scholar 

  26. Lachniet MS (2009) Climatic and environmental controls on speleothem oxygen-isotope values. Quat Sci Rev 28:412–432. doi:10.1016/j.quascirev.2008.10.021

    Article  Google Scholar 

  27. Larson TE, Sollo FW, McGurk FF (1973) Complexes affecting the solubility of calcium carbonate in water. University of Illinois at Urbana-Champaign, Water Resources Center, Champaign

    Google Scholar 

  28. Liss PS, Slater PG (1974) Flux of gases across the air-sea interface. Nature 247:181–184. doi:10.1038/247181a0

    Article  Google Scholar 

  29. Mackenzie FT, Bischoff WD, Bishop FC et al (1983) Magnesian calcites; low-temperature occurrence, solubility and solid-solution behavior. Rev Miner Geochem 11:97–144

    Google Scholar 

  30. McDermott F (2004) Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quat Sci Rev 23:901–918. doi:10.1016/j.quascirev.2003.06.021

    Article  Google Scholar 

  31. McGillen MR, Fairchild IJ (2005) An experimental study of incongruent dissolution of CaCO3 under analogue glacial conditions. J Glaciol 51:383–390. doi:10.3189/172756505781829223

    Article  Google Scholar 

  32. McMillan EA, Fairchild IJ, Frisia S, Borsato A, McDermott F (2005) Annual trace element cycles in calcite-aragonite speleothems: evidence of drought in the western Mediterranean 1200–1100 year BP. J Quat Sci 20:423–433. doi:10.1002/jqs.943

    Article  Google Scholar 

  33. Morse JW, Arvidson RS (2002) The dissolution kinetics of major sedimentary carbonate minerals. Earth Sci Rev 58:51–84. doi:10.1016/S0012-8252(01)00083-6

    Article  Google Scholar 

  34. Morse JW, Mackenzie FT (1990) Geochemistry of sedimentary carbonates. Elsevier, Amsterdam

    Google Scholar 

  35. Morse JW, Arvidson RS, Lüttge A (2007) Calcium carbonate formation and dissolution. Chem Rev 107:342–381. doi:10.1021/cr050358j

    Article  Google Scholar 

  36. Musgrove M, Banner JL (2004) Controls on the spatial and temporal variability of vadose dripwater geochemistry: Edwards Aquifer, central Texas. Geochim Cosmochim Acta 68:1007–1020. doi:10.1016/j.gca.2003.08.014

    Article  Google Scholar 

  37. Orland IJ, Burstyn Y, Bar-Matthews M et al (2014) Seasonal climate signals (1990–2008) in a modern Soreq Cave stalagmite as revealed by high-resolution geochemical analysis. Chem Geol 363:322–333. doi:10.1016/j.chemgeo.2013.11.011

    Article  Google Scholar 

  38. Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Techniques and Methods, book 6, chap. A43. US Department of the Interior, US Geological Survey, Denver

  39. Peyraube N, Lastennet R, Denis A, Malaurent P (2013) Estimation of epikarst air PCO2 using measurements of water δ13CTDIC, cave air PCO2 and δ13CCO2. Geochim Cosmochim Acta 118:1–17. doi:10.1016/j.gca.2013.03.046

    Article  Google Scholar 

  40. Plummer LN, Mackenzie FT (1974) Predicting mineral solubility from rate data; application to the dissolution of magnesian calcites. Am J Sci 274:61–83

    Article  Google Scholar 

  41. Plummer LN, Wigley TML, Parkhurst DL (1978) The kinetics of calcite dissolution in CO2-water systems at 5 degrees to 60 degrees C and 0.0 to 1.0 atm CO2. Am J Sci 278:179–216. doi:10.2475/ajs.278.2.179

    Article  Google Scholar 

  42. Pracný P, Faimon J (2013) Can dripwater hydrogeochemistry help us to discover hidden upper cave levels? In: Filippi M, Bosák P (eds) Proceedings of the 16th international congress of speleology, July 21–28, Brno. Czech Speleological Society, Praha, pp 366–368

  43. Pracný P, Faimon J, Kabelka L, Hebelka J (2016a) Variations of carbon dioxide in the air and dripwaters of Punkva Caves (Moravian Karst, Czech Republic). Carbonates Evaporites 31:375–386. doi:10.1007/s13146-015-0259-0

    Article  Google Scholar 

  44. Pracný P, Faimon J, Sracek O et al (2016b) Anomalous drip in the Punkva caves (Moravian Karst): relevant implications for paleoclimatic proxies. Hydrol Process 30:1506–1520. doi:10.1002/hyp.10731

    Article  Google Scholar 

  45. Reddy MM, Plummer LN, Busenberg E (1981) Crystal growth of calcite from calcium bicarbonate solutions at constant PCO2 and 25 C: a test of a calcite dissolution model. Geochim Cosmochim Acta 45:1281–1289. doi:10.1016/0016-7037(81)90222-2

    Article  Google Scholar 

  46. Riechelmann DFC, Schröder-Ritzrau A, Scholz D et al (2011) Monitoring Bunker Cave (NW Germany): a prerequisite to interpret geochemical proxy data of speleothems from this site. J Hydrol 409:682–695. doi:10.1016/j.jhydrol.2011.08.068

    Article  Google Scholar 

  47. Riechelmann S, Schröder-Ritzrau A, Wassenburg JA et al (2014) Physicochemical characteristics of drip waters: influence on mineralogy and crystal morphology of recent cave carbonate precipitates. Geochim Cosmochim Acta 145:13–29. doi:10.1016/j.gca.2014.09.019

    Article  Google Scholar 

  48. Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. U.S. Geol. Surv. Bull. 2131, U.S. Gov. Print. Off., Washington, DC

  49. Saldi GD, Schott J, Pokrovsky OS, Oelkers EH (2010) An experimental study of magnesite dissolution rates at neutral to alkaline conditions and 150 and 200 °C as a function of pH, total dissolved carbonate concentration, and chemical affinity. Geochim Cosmochim Acta 74:6344–6356. doi:10.1016/j.gca.2010.07.012

    Article  Google Scholar 

  50. Sander R (2015) Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos Chem Phys 15:4399–4981. doi:10.5194/acp-15-4399-2015

    Article  Google Scholar 

  51. Sinclair DJ (2011) Two mathematical models of Mg and Sr partitioning into solution during incongruent calcite dissolution. Implications for dripwater and speleothem studies. Chem Geol 283:119–133. doi:10.1016/j.chemgeo.2010.05.022

    Article  Google Scholar 

  52. Sinclair DJ, Banner JL, Taylor FW et al (2012) Magnesium and strontium systematics in tropical speleothems from the Western Pacific. Chem Geol 294–295:1–17. doi:10.1016/j.chemgeo.2011.10.008

    Article  Google Scholar 

  53. Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley, New York

    Google Scholar 

  54. Tan L, Shen CC, Cai Y et al (2014) Trace-element variations in an annually layered stalagmite as recorders of climatic changes and anthropogenic pollution in central China. Quat Res (United States) 81:181–188. doi:10.1016/j.yqres.2013.12.001

    Google Scholar 

  55. Tremaine DM, Froelich PN (2013) Speleothem trace element signatures: a hydrologic geochemical study of modern cave dripwaters and farmed calcite. Geochim Cosmochim Acta 121:522–545. doi:10.1016/j.gca.2013.07.026

    Article  Google Scholar 

  56. Verheyden S, Keppens E, Fairchild IJ, McDermott F, Weis D (2000) Mg, Sr and Sr isotope geochemistry of a Belgian Holocene speleothem: implications for paleoclimate reconstructions. Chem Geol 169:131–144. doi:10.1016/S0009-2541(00)00299-0

    Article  Google Scholar 

  57. Verheyden S, Nader FH, Cheng HJ, Edwards LR, Swennen R (2008) Paleoclimate reconstruction in the Levant region from the geochemistry of a Holocene stalagmite from the Jeita cave, Lebanon. Quat Res 70:368–381. doi:10.1016/j.yqres.2008.05.004

    Article  Google Scholar 

  58. Williams PW (2008) The role of the epikarst in karst and cave hydrogeology: a review. Int J Speleol 37:1–10

    Article  Google Scholar 

  59. Wong CI, Banner JL, Musgrove M (2011) Seasonal dripwater Mg/Ca and Sr/Ca variations driven by cave ventilation: implications for and modeling of speleothem paleoclimate records. Geochim Cosmochim Acta 75:3514–3529. doi:10.1016/j.gca.2011.03.025

    Article  Google Scholar 

Download references

Acknowledgements

We thank GEOtest, a.s., for financial and material support of field work and analyses. Many thanks also belong to Masaryk University (Brno) and Palacký University (Olomouc) for the additional support. We would like to thank the anonymous reviewer for valuable comments that helped us to improve the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pavel Pracný.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pracný, P., Faimon, J., Všianský, D. et al. Evolution of Mg/Ca Ratios During Limestone Dissolution Under Epikarstic Conditions. Aquat Geochem 23, 119–139 (2017). https://doi.org/10.1007/s10498-017-9313-y

Download citation

Keywords

  • Moravian Karst
  • Limestone dissolution
  • Kinetic model
  • Cave dripwater
  • Mg-calcite