Skip to main content

Advertisement

Log in

Recycling of Organic Matter in the Sediments of Santa Monica Basin, California Borderland

  • Original Article
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Geochemical and isotopic data for the uppermost 1.2 m of the sediments of the central Santa Monica Basin plain were examined to better understand organic matter deposition and recycling at this site. Isotopic signatures (Δ14C and δ13C) of methane (CH4) and dissolved inorganic carbon (DIC) indicate the occurrence of anaerobic oxidation of CH4 that is fueled by CH4 supplied from a relict reservoir that is decoupled from local organic carbon (Corg) degradation and methanogenesis. This finding was corroborated by a flux budget of pore-water solutes across the basal horizon of the profile. Together these results provide a plausible explanation for the anomalously low ratio between alkalinity production and sulfate consumption reported for these sediments over two decades ago. Shifts in Δ14C and δ13C signatures of Corg have previously been reported across the 20-cm depth horizon for this site and attributed to a transition from oxic to anoxic bottom water that occurred ~350 years BP. However, we show that this horizon also coincides with a boundary between the base of a hemipelagic mud section and the top of a turbidite interval, complicating the interpretation of organic geochemical data across this boundary. Radiocarbon signatures of DIC diffusing upward into surface sediments indicate that remineralization at depth is supported by relatively 14C-enriched Corg within the sedimentary matrix. While the exact nature of this Corg is unclear, possible sources are hemipelagic mud sections that were buried rapidly under thick turbidites, and 14C-rich moieties dispersed within Corg-poor turbidite sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aller RC, Blair NE, Brunskill GJ (2008) Early diagenetic cycling, incineration, and burial of sedimentary organic carbon in the central Gulf of Papua (Papua New Guinea). J Geophys Res Oceans. doi:10.1029/2006JF000689

    Google Scholar 

  • Alperin MJ, Reeburgh WS, Whiticar MJ (1988) Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation. Global Biogeochem Cycles 2:279–288

    Article  Google Scholar 

  • Alperin MJ, Albert DB, Martens CS (1994) Seasonal variations in production and consumption rates of dissolved organic carbon in an organic-rich coastal sediment. Geochim Cosmochim Acta 58:4909–4930

    Article  Google Scholar 

  • Alperin MJ, Martens CS, Albert DB et al (1999) Benthic fluxes and porewater concentration profiles of dissolved organic carbon in sediments from the North Carolina continental slope. Geochim Cosmochim Acta 63:427–448

    Article  Google Scholar 

  • Arning ET, van Berk W, Schulz H-M (2016) Fate and behaviour of marine organic matter during burial ofanoxic sediments: testing CH2O as generalized input parameter in reaction transport models. Mar Chem 178:8–21

    Article  Google Scholar 

  • Berelson WM, Stott LD (2003) Productivity and organic carbon rain to the California margin seafloor: modern and paleoceanographic perspectives. Paleoceanography 18. doi:10.1029/2001PA000672

  • Berelson WM, McManus J, Coale KH et al (1996) Biogenic matter diagenesis on the sea floor: a comparison between two continental margin transects. J Mar Res 54:731–762

    Article  Google Scholar 

  • Berelson WM, Prokopenko M, Sansone FJ et al (2005) Anaerobic diagenesis of silica and carbon in continental margin sediments: discrete zones of TCO2 production. Geochim Cosmochim Acta 69:4611–4629

    Article  Google Scholar 

  • Berner RA, Scott MR, Thomlinson C (1970) Carbonate alkalinity in the pore waters of anoxic marine sediments. Limnol Oceanogr 15:544–549

    Article  Google Scholar 

  • Boudreau BP (1996) Diagenetic models and their implementation: modelling transport and reactions in aquatic sediments. Springer, Berlin

    Google Scholar 

  • Burdige DJ (2006) Geochemistry of marine sediments. Princeton University Press, Princeton

    Google Scholar 

  • Burdige DJ, Komada T (2011) Anaerobic oxidation of methane and the stoichiometry of remineralization processes in continental margin sediments. Limnol Oceanogr 56:1781–1796

    Article  Google Scholar 

  • Burdige DJ, Komada T (2013) Using ammonium pore water profiles to assess stoichiometry of deepremineralization processes in methanogenic continental margin sediments. Geochem Geophys Geosyst 14:1626–1643

    Article  Google Scholar 

  • Burdige DJ, Berelson WM, Coale KH et al (1999) Fluxes of dissolved organic carbon from California continental margin sediments. Geochim Cosmochim Acta 63:1507–1515

    Article  Google Scholar 

  • Burdige DJ, Komada T, Magen C, Chanton JC (in revision) Methane dynamics in Santa Barbara Basin (USA) sediments as examined with a reaction-transport model. J Mar Res

  • Chong LS, Prokopenko MG, Berelson WM et al (2012) Nitrogen cycling within suboxic and anoxic sediments from the continental margin of Western North America. Mar Chem 128–129:13–25

    Article  Google Scholar 

  • Christensen CJ, Gorsline DS, Hammond DE, Lund SP (1994) Non-annual laminations and expansion of anoxic basin-floor conditions in Santa Monica Basin, California Borderland, over the past four centuries. Mar Geol 116:399–418

    Article  Google Scholar 

  • Collins LE, Berelson W, Hammond DE et al (2011) Particle fluxes in San Pedro Basin, California: a four-year record of sedimentation and physical forcing. Deep Sea Res Part I Oceanogr Res Pap 58:898–914

    Article  Google Scholar 

  • Craven DB, Jahnke RA (1992) Microbial utilization and turnover of organic carbon in Santa Monica Basin sediments. Prog Oceanogr 30:313–333

    Article  Google Scholar 

  • Gieskes JM, Gamo T, Brumsack H (1991) Chemical methods for interstitial water analysis aboard JOIDES resolution: Ocean Drilling Program, technical note 15

  • Gong C, Hollander DJ (1999) Evidence for differential degradation of alkenones under contrasting bottom water oxygen conditions: implication for paleotemperature reconstruction. Geochim Cosmochim Acta 63:405–411. doi:10.1016/S0016-7037(98)00283-X

    Article  Google Scholar 

  • Gorsline DS (1992) The geological setting of Santa Monica and San Pedro Basins, California Borderland. Prog Oceanogr 30:1–36

    Article  Google Scholar 

  • Gorsline DS (1996) Depositional events in Santa Monica Basin, California Borderland, over the past five centuries. Sediment Geol 104:73–88

    Article  Google Scholar 

  • Gorsline DS, De Diego T, Nava-Sanchez EH (2000) Seismically triggered turbidites in small margin basins: Alfonso Basin, Western Gulf of California and Santa Monica Basin, California Borderland. Sediment Geol 135:21–35

    Article  Google Scholar 

  • Grabowski KS, Knies DL, Tumey SJ et al (2004) Carbon pool analysis of methane hydrate regions in the seafloor by accelerator mass spectrometry. Nucl Instrum Methods Phys Res B 223–224:435–440

    Article  Google Scholar 

  • Gujer W, Zehnder AJB (1983) Conversion processes in anaerobic digestion. Water Sci Technol 15:127–176

    Google Scholar 

  • Hein JR, Normark WR, McIntyre BR et al (2006) Methanogenic calcite, 13C-depleted bivalve shells, and gas hydrate from a mud volcano offshore southern California. Geology 34:109

    Article  Google Scholar 

  • Holmkvist L, Ferdelman TG, Jørgensen BB (2011) A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochim Cosmochim Acta 75:3581–3599

    Article  Google Scholar 

  • Holsten J, Stott L, Berelson W (2004) Reconstructing benthic carbon oxidation rates using δ13C of benthicforaminifers. Mar Micropaleontol 53:117–132

    Article  Google Scholar 

  • Hu X, Burdige DJ (2008) Shallow marine carbonate dissolution and early diagenesis—implications from an incubation study. J Mar Res 66:489–527

    Article  Google Scholar 

  • Huh C-A, Zahnle DL, Small LF (1987) Budgets and behaviors of uranium and thorium series isotopes in Santa Monica Basin sediments. Geochim Cosmochim Acta 51:1743–1754

    Article  Google Scholar 

  • Huh C-A, Small LF, Niemnil S et al (1990) Sedimentation dynamics in the Santa Monica-San Pedro Basin off Los Angeles: radiochemical, sediment trap and transmissometer studies. Cont Shelf Res 10:137–164

    Article  Google Scholar 

  • Jahnke RA (1990) Early diagenesis and recycling of biogenic debris at the seafloor, Santa Monica Basin, California. J Mar Res 48:413–436. doi:10.1357/002224090784988773

    Article  Google Scholar 

  • Jørgensen BB, Parkes JR (2010) Role of sulfate reduction and methane production by organic carbon degradation in eutrophic fjord sediments (Limfjorden, Denmark). Limnol Oceanogr 55:1338–1352

    Article  Google Scholar 

  • Kessler JD, Reeburgh WS, Valentine DL et al (2008) A survey of methane isotope abundance (14C, 13C, 2H) from five nearshore marine basins that reveals unusual radiocarbon levels in subsurface waters. J Geophys Res 113:C12021

    Article  Google Scholar 

  • Komada T, Burdige DJ, Crispo SM et al (2013) Dissolved organic carbon dynamics in anaerobic sediments of the Santa Monica Basin. Geochim Cosmochim Acta 110:253–273

    Article  Google Scholar 

  • Komada T, Burdige DJ, Li HL et al (2016) Organic matter cycling across the sulfate-methane transition zone of the Santa Barbara Basin, California Borderland. Geochim Cosmochim Acta 176:259–278. doi:10.1016/j.gca.2015.12.022

    Article  Google Scholar 

  • Malinverno A, Pohlman JW (2011) Modeling sulfate reduction in methane hydrate-bearing continental margin sediments: does a sulfate-methane transition require anaerobic oxidation of methane? Geochem Geophys Geosyst 12. doi:10.1029/2011GC003501

  • Masiello CA, Druffel ERM (2003) Organic and black carbon 13C and 14C through the Santa Monica Basin sediment oxic-anoxic transition. Geophys Res Lett. doi:10.1029/2002GL015050

    Google Scholar 

  • Mix AC, Lund DC, Pisias NG et al (1999) Rapid climate oscillations in the Northeast Pacific during the last deglaciation reflect northern and southern hemisphere sources. Mech Glob Clim Change Millenial Time Scales Geophys Monogr 112:127–148

    Article  Google Scholar 

  • Mollenhauer G, Eglinton TI (2007) Diagenetic and sedimentological controls on the composition of organic matter preserved in California Borderland Basin sediments. Limnol Oceanogr 52:558–576

    Article  Google Scholar 

  • Monteverde DR, Gómez-Consarnau L, Cutter L et al (2015) Vitamin B1 in marine sediments: pore water concentration gradient drives benthic flux with potential biological implications. Front Microbiol 6:434. doi:10.3389/fmicb.2015.00434

    Article  Google Scholar 

  • Normark WR, Piper DJW, Sliter R (2006) Sea-level and tectonic control of middle to late Pleistocene turbidite systems in Santa Monica Basin, offshore California. Sedimentology 53:867–897

    Article  Google Scholar 

  • O’Reilly SE, Watkins J, Furukawa Y (2005) Secondary mineral formation associated with respiration of nontronite, NAu-1 by iron reducing bacteria. Geochem Trans 6:67–76

    Article  Google Scholar 

  • Paull CK, Normark WR, Ussler WI et al (2008) Association among active seafloor deformation, mound formation, and gas hydrate growth and accumulation within the seafloor of the Santa Monica Basin, offshore California. Mar Geol 250:258–275

    Article  Google Scholar 

  • Prokopenko MG, Sigman DM, Berelson WM et al (2011) Denitrification in anoxic sediments supported by biological nitrate transport. Geochim Cosmochim Acta 75:7180–7199

    Article  Google Scholar 

  • Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea-water. In: Hill MN (ed) The sea, vol 2. Interscience, New York, pp 26–87

    Google Scholar 

  • Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513

    Article  Google Scholar 

  • Romans BW, Normark WR, McGann MM et al (2009) Coarse-grained sediment delivery and distribution in the Holocene Santa Monica Basin, California: implications for evaluating source-to-sink flux at millennial time scales. Geol Soc Am Bull 121:1394–1408

    Article  Google Scholar 

  • Sayles FL, Curry WB (1988) δ13C, TCO2, and the metabolism of organic carbon in deep sea sediments. Geochim Cosmochim Acta 52:2963–2978. doi:10.1016/0016-7037(88)90161-5

    Article  Google Scholar 

  • Schrag DP, Higgins JA, Macdonald FA, Johnston DT (2013) Authigenic carbonate and the history of the global carbon cycle. Science 339:540–543

    Article  Google Scholar 

  • Schulz HD (2006) Quantification of early diagenesis: dissolved constituents in pore water and signals in the solid phase. In: Schulz HD, Zabel M (eds) Marine geochemistry, 2nd edn. Springer, Berlin, pp 73–124

    Chapter  Google Scholar 

  • Shipboard Scientific Party (1997) Site 1015. In: Lyle M, Koizumi I, Richter C et al (eds) Proceedings of the Ocean Drilling Program, Initial Reports. Ocean Drilling Program, College Station, TX, pp 223–237

  • Stuiver M, Polach HA (1977) Radiocarbon. Radiocarbon 19:355–363

    Article  Google Scholar 

  • Sun X, Turchyn AV (2014) Significant contribution of authigenic carbonate to marine carbon burial. Nat Geosci 7:201–204

    Article  Google Scholar 

  • Vorhies JS, Gaines RR (2009) Microbial dissolution of clay minerals as a source of iron and silica in marine sediments. Nat Geosci 2:221–225. doi:10.1038/ngeo441

    Article  Google Scholar 

  • Wallman K, Aloisi G, Haeckel M et al (2008) Silicate weathering in anoxic marine sediments. Geochim Cosmochim Acta 72:3067–3090

    Article  Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314

    Article  Google Scholar 

  • Williams PM, Robertson KJ, Soutar A et al (1992) Isotopic signatures (14C, 14C, 15 N) as tracers of sources and cycling of soluble and particulate organic matter in Santa Monica Basin, California. Prog Oceanogr 30:253–290

    Article  Google Scholar 

  • Wolf-Gladrow DA, Zeebe RE, Klaas C et al (2007) Total alkalinity: the explicit conservative expression and its application to biogeochemical processes. Mar Chem 106:287–300. doi:10.1016/j.marchem.2007.01.006

    Article  Google Scholar 

  • Zeebe RE, Wolf-Gladrow DA (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgements

We thank S. Smith, L. Johnson, A. Grose, A. K. Cada, J. Polly, R. Paul, T. Smith, J. Fuller, A. Gerretson, B. Riegel, J. Bleakney, P. Tennis, A. Pitts, M. Jinuntuya, S. Bosman, the late N. Protopopescu, and the Captains and Crew of R/V Point Sur and R/V New Horizon for their assistance in this work. D. Hubbard and the OSU Marine and Geology Repository provided coring expertise and equipment. S. Griffin and E.R.M. Druffel are acknowledged for processing a subset of the pore-water DOC samples for isotope analyses. We thank Associate Editor Tim Shaw for handling this manuscript, as well as Will Berelson and an anonymous reviewer for their comments that helped improve the quality of this manuscript. We are grateful to Rick and Debbie Jahnke for their prior work on Santa Monica Basin sediments as well as their many other contributions to the field of marine biogeochemistry. DJB also thanks them for their friendship and good times when they were all at Scripps in the 1980s. This material is based upon work supported by the National Science Foundation under Grant Numbers: OCE-0726819 and OCE-1155764 (TK); OCE-0727179 and OCE-1155562 (DJB); and OCE-1155320 (JPC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoko Komada.

Appendix

Appendix

1.1 Estimating the depth at which pore-water sulfate is exhausted

The depth at which pore-water sulfate (SO4 2−) is exhausted can be estimated by assuming that the SO4 2− flux remains constant and that the profile remains linear (i.e., net-reaction rate of SO4 2− remains ~0) beyond the 1.2-m lower boundary into the sandy interval below. If the SO4 2− gradient below 40 cm (Fig. 3a) was to remain constant, SO4 2− would reach zero at 207 cm. However, this is likely an overestimate, because the sandy layer (which extends from 1.2 to ~2 m; Romans et al. 2009) has a porosity value that is lower than that of the silty layer sampled in this study. Under a constant flux condition, the SO4 2− concentration gradients in the silty and sandy layers are linked via Fick’s first law (Table 1 caption):

$${\text{Sulfate}}\;{\text{flux}} = - \phi_{1} D_{{{\text{s}},1}} \left( {\frac{{{\text{d}}C}}{{{\text{d}}z}}} \right)_{1} = - \phi_{2} D_{{{\text{s}},2}} \left( {\frac{{{\text{d}}C}}{{{\text{d}}z}}} \right)_{2}$$
(15)

where ϕ is porosity, D s is the whole-sediment diffusion coefficient (\(D_{\text{s}} = D^{0} /\left( {1 - 2.02\ln \phi } \right)\)) , dC/dz is the sulfate concentration gradient, and subscripts 1 and 2 represent the silty layer and the sandy layer, respectively. Rearranging the above gives:

$$\left( {\phi_{1} {\text{D}}_{{{\text{s}},1}} } \right)/\left( {\phi_{2} {\text{D}}_{{{\text{s}},2}} } \right) = \left( {\frac{{{\text{d}}C}}{{{\text{d}}z}}} \right)_{2} \Big/\left( {\frac{{{\text{d}}C}}{{{\text{d}}z}}} \right)_{1} = {\text{gradient}}\;{\text{ratio}}$$
(16)

Using our measured porosity value of 0.7 for the silty layer (ϕ 1) and 0.38 for the sandy layer (ϕ 2; Romans et al. 2009), and the seawater free solution diffusion coefficient (D 0) of SO4 2− at 5°C (5.72 × 10−10 m2 s−1; Schulz 2006) gives a gradient ratio of 3.2. Extrapolating the deepest SO4 2− concentration datum (10.76 mM at 123 cm) using this adjusted gradient predicts a depth of SO4 2− depletion at 149 cm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komada, T., Burdige, D.J., Magen, C. et al. Recycling of Organic Matter in the Sediments of Santa Monica Basin, California Borderland. Aquat Geochem 22, 593–618 (2016). https://doi.org/10.1007/s10498-016-9308-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-016-9308-0

Keywords

Navigation