Abstract
The geochemical cycles of iron and sulphur in marine sediments are strongly intertwined and give rise to a complex network of redox and precipitation reactions. Bioturbation refers to all modes of transport of particles and solutes induced by larger organisms, and in the present-day seafloor, bioturbation is one of the most important factors controlling the biogeochemical cycling of iron and sulphur. To better understand how bioturbation controls Fe and S cycling, we developed reactive transport model of a coastal sediment impacted by faunal activity. Subsequently, we performed a model sensitivity analysis, separately investigating the two different transport modes of bioturbation, i.e. bio-mixing (solid particle transport) and bio-irrigation (enhanced solute transport). This analysis reveals that bio-mixing and bio-irrigation have distinct—and largely opposing effects on both the iron and sulphur cycles. Bio-mixing enhances transport between the oxic and suboxic zones, thus promoting the reduction of oxidised species (e.g. iron oxyhydroxides) and the oxidation of reduced species (e.g. iron sulphides). Through the re-oxidation of iron sulphides, bio-mixing strongly enhances the recycling of Fe and S between their reduced and oxidised states. Bio-irrigation on the other hand removes reduced solutes, i.e. ferrous iron and free sulphide, from the sediment pore water. These reduced species are then reoxidised in the overlying water and not recycled within the sediment column, which leads to a decrease in Fe and S recycling. Overall, our results demonstrate that the ecology of the macrofauna (inducing bio-mixing or bio-irrigation, or both) matters when assessing their impact on sediment geochemistry. This finding seems particularly relevant for sedimentary cycling across Cambrian transition, when benthic fauna started colonizing and reworking the seafloor.











Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Ahonen L, Tuovinen OH (1991) Temperature Effects on Bacterial leaching of Sulfide minerals in shake flask experiments. Appl Environ Microbiol 57:138–145
Aller RC (1977) The influence of macrobenthos on chemical diagenesis of marine sediments. PhD thesis, Yale University, New Haven, Connecticut, 600 pp
Aller RC (1994) The sedimentary Mn cycle in Long Island Sound: its role as intermediate oxidant and the influence of bioturbation, O2, and Corg flux on diagenetic reaction balances. J Mar Res 52:259–295. doi:10.1357/0022240943077091
Aller RC (2014) Sedimentary diagenesis, depositional environments, and benthic fluxes. Treatise on geochemistry, 2nd edn. Elsevier Ltd., Amsterdam, pp 293–334
Aller RC, Rude PD (1987) Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments. Geochim Cosmochim Acta 52:751–765
Aller RC, Aller JY (1998) The effect of biogenic irrigation intensity and solute exchange on diagenetic reaction rates in marine sediments. J Mar Res 56:905–936. doi:10.1357/002224098321667413
Aller RC, Macking JE, Cox RTJ (1986) Diagenesis of Fe and S in Amazon inner shelf muds: apparent dominance of Fe reduction and implications for the genesis of ironstones. Cont Shelf Res 6:263–289
Banta GT, Holmer M, Jensen MH, Kristensen E (1999) Effects of two polychaete worms, Nereis diversicolor and Arenicola marina, on aerobic and anaerobic decomposition in a sandy marine sediment. Aquat Microb Ecol 19:189–204. doi:10.3354/ame019189
Berg P, Rysgaard S, Thamdrup B (2003) Dynamic modeling of early diagenesis and nutrient cycling. A case study in an artic marine sediment. Am J Sci 303:905–955. doi:10.2475/ajs.303.10.905
Berner RA (1970) Sedimentary pyrite formation. Am J Sci 268:1–23. doi:10.2475/ajs.268.1.1
Berner RA (1981) A new geochemical classification of sedimentary Environments. J Sediment Petrol 51:359–365
Berner RA, Westrich JT (1985) Bioturbation and the early diagenesis of carbon and sulfur. Am J Sci 285:193–206
Boudreau BP (1984) On the equivalence of nonlocal and radial-diffusion models for porewater irrigation. J Mar Res 42:731–735. doi:10.1357/002224084788505924
Boudreau BP (1996) The diffusive tortuosity of fine-grained unlithified sediments. Geochim Cosmochim Acta 60:3139–3142. doi:10.1016/0016-7037(96)00158-5
Boudreau BP (1997) Diagenetic models and their Implementation. Springer, Berlin
Boudreau BP (1998) Mean mixed depth of sediments: the wherefore and the why. Limnol Oceanogr 43:524–526
Brown PN, Byrne GD, Hindmarsh AC (1989) VODE, a variable-coefficient ODE solver. SIAM J Sci Stat Comput 10:1038–1051
Burdige DJ (1993) The biogeochemistry of manganese and iron reduction in marine sediments. Earth Sci Rev 35:249–284. doi:10.1016/0012-8252(93)90040-E
Burdige DJ (2006) Geochemistry of marine sediments. Princeton University Press, Princeton
Cameron EM (1982) Sulphate and sulphate reduction in early Precambrian oceans. Nature 296:145–148. doi:10.1017/CBO9781107415324.004
Canfield DE (1989) Reactive iron in marine sediments. Geochim Cosmochim Acta 53:619–632. doi:10.1016/0016-7037(89)90005-7
Canfield DE, Farquhar J (2009) Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proc Natl Acad Sci 106:8123–8127
Canfield DE, Thamdrup B (2009) Towards a consistent classification scheme for geochemical environments, or, why we wish the term ‘suboxic’ would go away. Geobiology 7:385–392. doi:10.1111/j.1472-4669.2009.00214
Canfield DE, Jorgensen BB, Fossing H et al (1993) Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol 113:27–40. doi:10.1016/0025-3227(93)90147-N
Canfield DE, Habicht KS, Thamdrup B (2000) The Archean sulfur cycle and the early history of atmospheric oxygen. Science 288:658–661. doi:10.1126/science.288.5466.658
Canfield DE, Poulton SW, Narbonne GM (2007) Late-neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315:92–95. doi:10.1126/science.1135013
Canfield DE, Ngombi-pemba L, Hammarlund EU et al (2013) Oxygen dynamics in the aftermath of the Great Oxidation of Earth’ s atmosphere. Proc Natl Acad Sci 110:16736–16741. doi:10.1073/pnas.1315570110
Chen X, Ling H-F, Vance D et al (2015) Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals. Nat Commun 6:7142. doi:10.1038/ncomms8142
Dale AW, Nickelsen L, Scholz F et al (2015) A revised global estimate of dissolved iron fluxes from marine sediments. Global Biogeochem Cycles 29:1–17. doi:10.1002/2013GB004679.Received
Fick A (1855) Uber Diffusion. Ann Phys (N Y) 94:59–86
Fossing H, Berg P, Thamdrup B, Rysgaard S, Sørensen HM, Nielsen K (2004) A model set-up for an oxygen and nutrient flux model for Aarhus Bay (Denmark). NERI Technical Report No. 483, National Environmental Research Institute, Denmark, 65 pp
François F, Gerino M, Stora G et al (2002) Functional approach to sediment reworking by gallery-forming macrobenthic organisms: modeling and application with the polychaete Nereis diversicolor. Mar Ecol Prog Ser 229:127–136. doi:10.3354/meps229127
Gilbert F, Hulth S, Grossi V et al (2007) Sediment reworking by marine benthic species from the Gullmar Fjord (Western Sweden): importance of faunal biovolume. J Exp Mar Biol Ecol 348:133–144. doi:10.1016/j.jembe.2007.04.015
Goldhaber M, Kaplan I (1974) The sulfur cycle. In: Goldberg E (ed) The sea, 5th edn. Wiley-Interscience, New York
Guilbaud R, Poulton SW, Butterfield NJ et al (2015) A global transition to ferruginous conditions in the early Neoproterozoic oceans. Nat Geosci. doi:10.1038/NGEO2434
Hines ME, Jones GE (1985) Microbial biogeochemistry and bioturbation in the sediments of Great Bay, New Hampshire. Estuar Coast Shelf Sci 20:729–742
Hofmann AF, Meysman FJR, Soetaert K, Middelburg JJ (2008) A step-by-step procedure for pH model construction in aquatic systems. Biogeosciences 5:227–251. doi:10.5194/bgd-4-3723-2007
Jørgensen BB (1982) Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature 296:643–645
Jørgensen BB, Gallardo VA (1999) Thioploca spp.: filamentous sulfur bacteria with nitrate vacuoles. FEMS Microbiol Ecol 28:301–313
Jørgenson BB, Nelson DC (2004) Sulfide oxidation in marine sediments: geochemistry meets microbiology. In: Amend JP, Edwards KJ, Lyons TW (eds) Sulfur biogeochemistry past and present. The Geological Society of America, Inc., Bouldor, Colorado, pp 63–82
Jørgensen BB, Glud RN, Holby O (2005) Oxygen distribution and bioirrigation in Arctic fjord sediments (Svalbard, Barents Sea). Mar Ecol Prog Ser 292:85–95
Kristensen E, Kostka JE (2005) Macrofaunal burrows and irrigation in marine sediment: microbiological and biogeochemical interactions. Interact Between Macro Microorg Mar Sediments. doi:10.1029/CE060p0125
Katsev S, Sundby B, Mucci A (2006) Modeling vertical excursions of the redox boundary in sediments: Application to deep basins of the Arctic Ocean. Limnol and Oceanogr 51(4):1581–1593
Kristensen E, Ahmed SI, Devol AH (1995) Aerobic and anaerobic decomposition of organic matter in marine sediment: which is fastest? Limnol Oceanogr 40:1430–1437
Kristensen E, Penha-Lopes G, Delefosse M et al (2012) What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar Ecol Prog Ser 446:285–302. doi:10.3354/meps09506
Lenton TM, Boyle RA, Poulton SW et al (2014) Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nat Geosci 7:257–265. doi:10.1038/NGEO2108
Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287
Lyons TW, Severmann S (2006) A critical look at iron paleoredox proxies: new insights from modern euxinic marine basins. Geochim Cosmochim Acta 70:5698–5722. doi:10.1016/j.gca.2006.08.021
Meile C, Berg P, Van Cappellen P, Tuncay K (2005) Solute-specific pore water irrigation: implications for chemical cycling in early diagenesis. J Mar Res 63:601–621. doi:10.1357/0022240054307885
Meysman FJR, Middelburg JJ, Herman PMJ, Heip CHR (2003) Reactive transport in surface sediments. II. Media: an object-oriented problem-solving environment for early diagenesis. Comput Geosci 29:301–318. doi:10.1016/S0098-3004(03)00007-4
Meysman FJR, Boudreau BP, Middelburg JJ (2005) Modeling reactive transport in sediments subject to bioturbation and compaction. Geochim Cosmochim Acta 69:3601–3617. doi:10.1016/j.gca.2005.01.004
Meysman FJR, Galaktionov OS, Gribsholt B, Middelburg JJ (2006a) Bio-irrigation in permeable sediments: an assessment of model complexity. J Mar Res 64:589–627. doi:10.1357/002224006778715757
Meysman FJR, Middelburg JJ, Heip CHR (2006b) Bioturbation: a fresh look at Darwin’s last idea. Trends Ecol Evol 21:688–695. doi:10.1016/j.tree.2006.08.002
Meysman FJR, Boudreau BP, Middelburg JJ (2010) When and why does bioturbation lead to diffusive mixing? J Mar Res 68:881–920
Meysman FJR, Risgaard-Petersen N, Malkin SY, Nielsen LP (2015) The geochemical fingerprint of microbial long-distance electron transport in the seafloor. Geochim Cosmochim Acta 152:122–142. doi:10.1016/j.gca.2014.12.014
Middelburg JJ, Levin LA (2009) Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6:1273–1293
Millero FJ, Hubinger S, Fernandez M, Garnett S (1987a) Oxidation of H2S in Seawater as a function of temperature, pH, and ionic strength. Environ Sci Technol 21:439–443. doi:10.1021/es00159a003
Millero FJ, Sotolongo S, Izaguirre M (1987b) The oxidation kinetics of Fe(II) in seawater. Geochim Cosmochim Acta 51:793–801. doi:10.1016/0016-7037(87)90093-7
Mouret A, Anschutz P, Lecroart P et al (2009) Benthic geochemistry of manganese in the Bay of Biscay, and sediment mass accumulation rate. Geo Mar Lett 29:133–149. doi:10.1007/s00367-008-0130-6
Nielsen LP, Risgaard-Petersen N, Fossing H et al (2010) Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463:1071–1074. doi:10.1038/nature08790
Pfeffer C, Larsen S, Song J et al (2012) Filamentous bacteria transport electrons over centimetre distances. Nature 491:218–221. doi:10.1038/nature11586
Postma D, Jakobsen R (1996) Redox zonation: equilibrium constraints on the Fe(III)/SO4-reduction interface. Geochim Cosmochim Acta 60:3169–3175. doi:10.1016/0016-7037(96)00156-1
Poulton SW, Canfield DE (2005) Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chem Geol 214:209–221. doi:10.1016/j.chemgeo.2004.09.003
Poulton SW, Fralick PW, Canfield DE (2004a) The transition to a sulphidic ocean ~1.84 billion years ago. Nature 431:173–177. doi:10.1038/nature02863.1
Poulton SW, Krom MD, Raiswell R (2004b) A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochim Cosmochim Acta 68:3703–3715. doi:10.1016/j.gca.2004.03.012
Raiswell R, Canfield DE (2012) The iron biogeochemical cycle past and present. Geochem Perspect 1:1–232
Reed DC, Gustafsson BG, Slomp CP (2015) Shelf-to-basin iron shuttling enhances vivianite formation in deep Baltic Sea sediments. Earth Planet Sci Lett 1:1–11. doi:10.1016/j.epsl.2015.11.033
Reimers CE, Suess E (1983) The partitioning of organic carbon fluxes and sedimentary organic matter decomposition rates in the ocean. Mar Chem 13:141–168
Renz JR, Forster S (2014) Effects of bioirrigation by the three sibling species of Marenzelleria spp. on solute fluxes and porewater nutrient profiles. Mar Ecol Prog Ser 505:145–159. doi:10.3354/meps10756
Rickard D (1995) Kinetics of FeS precipitation: part 1. Competing reaction mechanisms. Geochim Cosmochim Acta 59:4367–4379. doi:10.1016/0016-7037(95)00251-T
Rickard D (2006) The solubility of FeS. Geochim Cosmochim Acta 70:5779–5789
Rickard D, Luther GW (2007) Chemistry of Iron Sulfides. Chem Rev 107(2):514–562. doi:10.1021/cr0503658
Risgaard-Petersen N, Revil A, Meister P, Nielsen LP (2012) Sulfur, iron-, and calcium cycling associated with natural electric currents running through marine sediment. Geochim Cosmochim Acta 92:1–13. doi:10.1016/j.gca.2012.05.036
Sayama M, Risgaard-petersen N, Nielsen LP et al (2005) Impact of bacterial NO3—transport on sediment biogeochemistry. Appl Environ Microbiol 71:7575–7577. doi:10.1128/AEM.71.11.7575
Schippers A, Jørgensen BB (2002) Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments. Geochim Cosmochim Acta 66:85–92. doi:10.1016/S0016-7037(01)00745-1
Scholz F, Severmann S, Mcmanus J, Hensen C (2014) Beyond the Black Sea paradigm: the sedimentary fingerprint of an open-marine iron shuttle. Geochim Cosmochim Acta 127:368–380. doi:10.1016/j.gca.2013.11.041
Schulz HN, Jørgensen BB (2001) Big bacteria. Annu Rev Microbiol 55:105–137
Seitaj D, Schauer R, Sulu-gambari F et al (2015) Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins. Proc Natl Acad Sci 112:13278–13283. doi:10.1073/pnas.1510152112
Soetaert K, Meysman F (2012) Reactive transport in aquatic ecosystems: rapid model prototyping in the open source software R. Environ Model Softw 32:49–60. doi:10.1016/j.envsoft.2011.08.011
Soetaert K, Herman PMJ, Middelburg JJ (1996) A model of early diagenetic processes from the shelf To abyssal depths. Geochim Cosmochim Acta 60:1019–1040
Soetaert K, Petzoldt T, Meysman FJR (2010a) marelac: Tools for Aquatic Sciences R package version 2.1
Soetaert K, Petzoldt T, Setzer RW (2010b) Package deSolve: solving initial value differential equations in R. J Stat Softw 33:1–25
Sperling EA, Halverson GP, Knoll AH et al (2013) A basin redox transect at the dawn of animal life. Earth Planet Sci Lett 371–372:143–155. doi:10.1016/j.epsl.2013.04.003
Taylor AM, Goldring R (1993) Description and analysis of bioturbation and ichnofabric. J Geol Soc London 150:141–148
Thamdrup B (2000) Bacterial manganese and iron reduction in aquatic sediments. In: Schink B (ed) Advances in microbial ecology, 16th edn. Luwer Academic/Plenum Publishers, New York, pp 41–84
Thamdrup B, Fossing H, Jorgensen BB (1994) Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim Cosmochim Acta 58:5115–5129
Turchyn AV, Schrag DP (2004) Oxygen isotope constraints on the sulfur cycle over the past 10 million years. Science 303:2004–2007. doi:10.1126/science.1092296
Van Cappellen P, Wang Y (1996) Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese. Am J Sci 296:197–243
Volkenborn N, Polerecky L, Wethey DS, Woodin SA (2010) Oscillatory porewater bioadvection in marine sediments induced by hydraulic activities of Arenicola marina. Limnol Oceanogr 55:1231–1247. doi:10.4319/lo.2010.55.3.1231
Westrich JT, Berner RA (1984) The role of sedimentary organic matter in bacterial sulfate reduction: the G model tested. Limnol Oceanogr 29:236–249. doi:10.4319/lo.1984.29.2.0236
Wijsman JWM, Middelburg JJ, Heip CHR (2001) Reactive iron in Black Sea Sediments: implications for iron recycling. Mar Geol 172:167–180. doi:10.1016/S0025-3227(00)00122-5
van de Velde S, Lesven L, Burdorf LDW et al. The impact of electrogenic sulfur oxidation on the biogeochemistry of coastal sediments: a field study. (accepted)
Zobell C, Rittenberg S (1948) Sulfate-reducing bacteria in marine sediments. J Mar Res 7:602–617
Acknowledgments
The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013) through ERC Grant 306933 (FJRM) and was financially supported by Research Foundation Flanders (FWO Aspirant Ph.D. Fellowship to SVDV).
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
van de Velde, S., Meysman, F.J.R. The Influence of Bioturbation on Iron and Sulphur Cycling in Marine Sediments: A Model Analysis. Aquat Geochem 22, 469–504 (2016). https://doi.org/10.1007/s10498-016-9301-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10498-016-9301-7

