Advertisement

Aquatic Geochemistry

, Volume 21, Issue 2–4, pp 143–158 | Cite as

Reduction Kinetics of Polymeric (Soluble) Manganese (IV) Oxide (MnO2) by Ferrous Iron (Fe2+)

  • Matthew SiebeckerEmail author
  • Andrew S. Madison
  • George W. LutherIII
Original Paper

Abstract

In numerous freshwater and marine environments, ferrous iron (Fe2+) can react with manganese oxides in a redox reaction. However, there are few quantitative data describing reaction rates. A “soluble” (colloidal and nanoparticulate) phase manganese dioxide (MnO2) was used to obtain kinetic data on MnO2 reduction by Fe2+ with a stopped flow UV–Vis method. Stopped flow experiments were carried out in unbuffered solutions between pH 4.9 and 5.36 and also at pH 7. The reaction was determined to be first order with respect to MnO2 and Fe2+ and second order overall. It is important to subtract absorbance of Fe(III) products from the UV–Vis data and to acquire data from the first milliseconds of the reaction. After subtracting Fe(III) product absorbance, the average second-order rate constant was determined to be 4338 ± 249 M−1 s−1 at 25 °C and pH 5. Reactions of 5 μM MnO2 with 50 and 100 μM Fe2+ were more than 50 % complete in 1.77 and 0.7 s, respectively. The reaction is an inner sphere electron transfer process as an outer sphere process is symmetry-forbidden. Studies show that Mn(III) intermediates are produced during the reaction. The fast kinetics makes this reaction significant to consider when modeling manganese oxide and reduced iron in environmental redox systems.

Keywords

Iron Manganese oxide Redox Kinetics Stopped flow UV–Vis 

Notes

Acknowledgments

This work was funded by grants from the Chemical Oceanography Division of the National Science Foundation (Grant Number OCE-1155385) and National Aeronautics and Space Administration (Grant Number NNX12AG20G) to G.W.L.

References

  1. Atkins P, de Paula J (2010) Atkins’ physical chemistry. OUP, OxfordGoogle Scholar
  2. Brendel PJ, Luther GW III (1995) Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O2, and S(-II) in porewaters of marine and freshwater sediments. Environ Sci Technol 29:751–761. doi: 10.1021/es00003a024 CrossRefGoogle Scholar
  3. Burdige DJ (1993) The biogeochemistry of manganese and iron reduction in marine sediments. Earth Sci Rev 35:249–284. doi: 10.1016/0012-8252(93)90040-E CrossRefGoogle Scholar
  4. Burdige DJ, Dhakar SP, Nealson KH (1992) Effects of manganese oxide mineralogy on microbial and chemical manganese reduction. Geomicrobiol J 10:27–48CrossRefGoogle Scholar
  5. Duckworth OW, Sposito G (2005) Siderophore-manganese(III) interactions. I. Air-oxidation of manganese(II) promoted by desferrioxamine B. Environ Sci Technol 39:6037–6044. doi: 10.1021/es050275k CrossRefGoogle Scholar
  6. Gustafsson JP (2011) Visual minteq ver. 3.0. http://vminteq.lwr.kth.se
  7. Herszage J, dos Santos Afonso M (2003) Mechanism of hydrogen sulfide oxidation by manganese(IV) oxide in aqueous solutions. Langmuir 19:9684–9692. doi: 10.1021/la034016p CrossRefGoogle Scholar
  8. Herszage J, Afonso MD, Luther GW (2003) Oxidation of cysteine and glutathione by soluble polymeric MnO(2). Environ Sci Technol 37:3332–3338. doi: 10.1021/es0340634 CrossRefGoogle Scholar
  9. Lafferty BJ, Ginder-Vogel M, Sparks DL (2010) Arsenite oxidation by a poorly crystalline manganese-oxide 1. Stirred-flow experiments. Environ Sci Technol 44:8460–8466. doi: 10.1021/es102013p CrossRefGoogle Scholar
  10. Landrot G, Ginder-Vogel M, Sparks DL (2010) Kinetics of chromium(III) oxidation by manganese(IV) oxides using quick scanning X-ray absorption fine structure spectroscopy (Q-XAFS). Environ Sci Technol 44:143–149. doi: 10.1021/es901759w CrossRefGoogle Scholar
  11. Luther GW (2005) Manganese(II) oxidation and Mn(IV) reduction in the environment—two one-electron transfer steps versus a single two-electron step. Geomicrobiol J 22:195–203. doi: 10.1080/01490450590946022 CrossRefGoogle Scholar
  12. Luther GW, Popp JI (2002) Kinetics of the abiotic reduction of polymeric manganese dioxide by nitrite: an anaerobic nitrification reaction. Aquat Geochem 8:15–36CrossRefGoogle Scholar
  13. Madison AS, Tebo BM, Mucci A, Sundby B, Luther GW (2013) Abundant porewater Mn(III) is a major component of the sedimentary redox system. Science 341:875–878. doi: 10.1126/science.1241396 CrossRefGoogle Scholar
  14. McKenzie RM (1980) The adsorption of lead and other heavy metals on oxides of manganese and iron. Aust J Soil Res 18:61–73CrossRefGoogle Scholar
  15. Perez Benito JF, Arias C (1992) Occurrence of colloidal manganese-dioxide in permanganate reactions. J Colloid Interface Sci 152:70–84. doi: 10.1016/0021-9797(92)90009-b CrossRefGoogle Scholar
  16. Perez Benito JF, Brillas E, Pouplana R (1989) Identification of a soluble form of colloidal manganese(IV). Inorg Chem 28:390–392. doi: 10.1021/ic00302a002 CrossRefGoogle Scholar
  17. Perez Benito JF, Arias C, Amat E (1996) A kinetic study of the reduction of colloidal manganese dioxide by oxalic acid. J Colloid Interface Sci 177:288–297. doi: 10.1006/jcis.1996.0034 CrossRefGoogle Scholar
  18. Post JE (1999) Manganese oxide minerals: crystal structures and economic and environmental significance. Proc Natl Acad Sci USA 96:3447–3454CrossRefGoogle Scholar
  19. Postma D (1985) Concentration of Mn and separation from Fe in sediments—I. Kinetics and stoichiometry of the reaction between birnessite and dissolved Fe(II) at 10°C. Geochim Cosmochim Acta 49:1023–1033. doi: 10.1016/0016-7037(85)90316-3 CrossRefGoogle Scholar
  20. Postma D, Appelo CAJ (2000) Reduction of Mn-oxides by ferrous iron in a flow system: column experiment and reactive transport modeling. Geochim Cosmochim Acta 64:1237–1247. doi: 10.1016/s0016-7037(99)00356-7 CrossRefGoogle Scholar
  21. Ravel B, Newville M (2005) Athena, artemis, hephaestus: data analysis for x-ray absorption spectroscopy using ifeffit. J Synchrotron Radiat 12:537–541. doi: 10.1107/s0909049505012719 CrossRefGoogle Scholar
  22. Stollenwerk KG (1994) Geochemical interactions between constituents in acidic groundwater and alluvium in an aquifer near Globe, Arizona. Appl Geochem 9:353–369. doi: 10.1016/0883-2927(94)90058-2 CrossRefGoogle Scholar
  23. Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. John Wiley and Sons, Inc, New YorkGoogle Scholar
  24. Tebo BM et al (2004) Biogenic manganese oxides: properties and mechanisms of formation. Annu Rev Earth Planet Sci 32:287–328CrossRefGoogle Scholar
  25. Van Cappellen P, Wang YF (1996) Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese. Am J Sci 296:197–243CrossRefGoogle Scholar
  26. Villinski JE, O’Day PA, Corley TL, Conklin MH (2001) In situ spectroscopic and solution analyses of the reductive dissolution of MnO(2) by Fe(II). Environ Sci Technol 35:1157–1163. doi: 10.1021/es001356d CrossRefGoogle Scholar
  27. Villinski JE, Saiers JE, Conklin MH (2003) The effects of reaction-product formation on the reductive dissolution of MnO2 by Fe(II). Environ Sci Technol 37:5589–5596. doi: 10.1021/es034060r CrossRefGoogle Scholar
  28. Webb SM, Dick GJ, Bargar JR, Tebo BM (2005) Evidence for the presence of Mn(III) intermediates in the bacterial oxidation of Mn(II). Proc Natl Acad Sci USA 102:5558–5563CrossRefGoogle Scholar
  29. Yao WS, Millero FJ (1993) The rate of sulfide oxidation by delta-MnO2 in seawater. Geochim Cosmochim Acta 57:3359–3365. doi: 10.1016/0016-7037(93)90544-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Matthew Siebecker
    • 1
    Email author
  • Andrew S. Madison
    • 1
    • 2
  • George W. LutherIII
    • 1
  1. 1.School of Marine Science and PolicyUniversity of DelawareLewesUSA
  2. 2.Golder Associates Inc.Mt. LaurelUSA

Personalised recommendations