Aquatic Geochemistry

, Volume 21, Issue 2–4, pp 99–121 | Cite as

Adsorption of Benzoic Acid and Related Carboxylic Acids onto FeOOH(Goethite): The Low Ionic Strength Regime

  • Charles F. Whitehead
  • Richard F. Carbonaro
  • Alan T. Stone
Original Paper


In the absence of added electrolyte, at ionic strengths below 0.5 mM, maximum extents on adsorption of 100 μM ligand onto 1.06 g L−1 FeOOH(goethite) increased in the order (2-phenylglycine) < phenylacetate < 5-methyl-2-anthranilate < anthranilate < 4-aminobenzoate ~ N-phenylglycine < benzoate < 4-hydroxybenzoate < 4-nitrobenzoate ~ salicylate. With salicylate, the maximum extent of adsorption occurred at a pH 0.60 log units higher than pKa(0/−), which corresponds to conversion of the monoanion to the protonated, neutral species. With the other eight ligands, maximum extents of adsorption occurred within 0.40 log units of pKa(0/−). Capillary electrophoresis enabled us to quantify extents of adsorption and confirm that added ligand had not undergone chemical alteration. The computer program DLIM performed the usual tasks of computer equilibrium speciation models, but also made it possible to integrate concentrations of ionic species from the surface outward toward bulk solution, yielding the nonspecific contribution to adsorption. DLIM enabled us to track changes to ionic strength as a function of reagents added and measured pH. In the low ionic strength regime, the adsorption stoichiometry \({>}{\text{SOH}} + {\text{L}}^{-} = {>}{\text{S}}\left( {\text{OH}} \right){\text{L}}^{ - }\) provided a better fit to experimental data for most ligands than the conventional stoichiometry \({>}{\text{SOH}} + {\text{H}}^{ + } + {\text{L}}^{ - } = {>}{\text{SL}}^{0} + {\text{H}}_{2} {\text{O}}\). Partial loss of waters of adsorption accompanying adsorption impedes the adsorption of strongly hydrated anions over less strongly hydrated ones.


Adsorption Diffuse layer Specific adsorption Nonspecific adsorption Benzoic acid Phenylacetic acid 



This project was supported by the National Research Initiative of the USDA Cooperative State Research, Education, and Extension Service, Grant Number 9800786, and by the Environmental Engineering Program of the National Science Foundation (Grant BES9317842).


  1. Abou-Zied OK, Al-Busaidi BY, Husband J (2014) Solvent effect on anthranilic acid spectroscopy. J Phys Chem A 118:103–109CrossRefGoogle Scholar
  2. Ainsworth CC, Friedrich DM, Gassman PL, Wang Z, Joly AG (1998) Characterization of salicylate–alumina surface complexes by polarized fluorescence spectroscopy. Geochim Cosmochim Acta 62:595–612CrossRefGoogle Scholar
  3. Bard AJ, Faulkner LR (2000) Electrochemical methods. Fundamentals and applications, 2nd edn. Wiley, NYGoogle Scholar
  4. Bijma K, Engberts JBFN (1997) Effect of counterions on properties of micelles formed by alkylpyridinium surfactants. 1. Conductometry and 1H-NMR chemical shifts. Langmuir 13:4843–4849CrossRefGoogle Scholar
  5. Bismondo A, Cassol A, Di Bernardro P, Portanova R, Tolazzi M, Zanonato PL (1999) Thorium(IV) complex formation with benzoic, phenylacetic, and 3-phenylpropionic acids in aqueous solution. Ann di Chim 89:185–192Google Scholar
  6. Bonaccorsi R, Palla P, Tomasi J (1984) Conformational energy of glycine in aqueous solutions and relative stability of the zwitterionic and neutral forms. An ab initio study. J Am Chem Soc 106:1945–1950CrossRefGoogle Scholar
  7. Borah JM, Sarma J, Mahiuddin S (2011) Influence of functional groups on the adsorption behaviour of substituted benzoic acids at the α-alumina/water interface. Colloids Surf A Physicochem Eng Asp 375:42–49CrossRefGoogle Scholar
  8. Carbonaro RF (2004) Sources, sinks, and speciation of chromium(III) (amino)carboxylate complexes in heterogeneous aqueous media. Chapter 6, pp 217–265. Ph.D. Thesis, Johns Hopkins University, Baltimore, MDGoogle Scholar
  9. Chan DYC, Pashley RM, Quirk JP (1984) Surface potentials derived from co-ion exclusion measurements on homoionic montmorillonite and illite. Clays Clay Min 32:131–138CrossRefGoogle Scholar
  10. Cooper EM, Vasudevan D (2009) Hydroxynaphthoic acid isomer sorption onto goethite. J Colloid Interface Sci 333:85–96CrossRefGoogle Scholar
  11. Coughlin BR, Stone AT (1995) Nonreversible adsorption of divalent metal-ions (MnII, CoII, NiII, CuII, and PbII) onto goethite: effects of acidification, FeII addition, and picolinic acid addition. Environ Sci Technol 29:2445–2455CrossRefGoogle Scholar
  12. Das MR, Borah JM, Kunz W, Ninham BW, Mahiuddin S (2010) Ion specificity of the zeta potential of α-alumina, and of the adsorption of p-hydroxybenzoate at the α-alumina-water interface. J Colloid Interface Sci 344:482–491CrossRefGoogle Scholar
  13. Dobson KD, McQuillan AJ (2000) In situ infrared spectroscopic analysis of the adsorption of aromatic carboxylic acids to TiO2, ZrO2, Al2O3, and Ta2O5 from aqueous solutions. Spectrochim Acta Pt A 56:557–565CrossRefGoogle Scholar
  14. Evanko CR, Dzombak DA (1998) Influence of structural features on sorption of NOM-analogue organic acids to goethite. Environ Sci Technol 32:2846–2855CrossRefGoogle Scholar
  15. Evanko CR, Dzombak DA (1999) Surface complexation modeling of organic acid sorption to goethite. J Colloid Interface Sci 214:189–206Google Scholar
  16. Filius JD, Meeussen JCL, Hiemstra T, Van Riemsdijk WH (2001) Modeling the binding of benzenecarboxylates by goethite: the ligand and charge distribution model. J Colloid Interface Sci 244:31–42CrossRefGoogle Scholar
  17. Gaboriaud F, Ehrhardt JJ (2003) Effects of different crystal faces on the surface charge of colloidal goethite (α-FeOOH) particles: an experimental and modeling study. Geochim Cosmochim Acta 67:967–983CrossRefGoogle Scholar
  18. Gu B, Schmitt J, Chen Z, Liang L, McCarthy JF (1995) Adsorption and desorption of different organic matter fractions on iron oxide. Geochim Cosmochim Acta 59:219–229CrossRefGoogle Scholar
  19. Guan X-H, Shang C, Chen G-H (2006) ATR-FTIR investigation of the role of phenolic groups in the interaction of some NOM model compounds with aluminum hydroxide. Chemosphere 65:2074–2081CrossRefGoogle Scholar
  20. Hanna K (2007) Sorption of two aromatic acids onto iron oxides: experimental study and modeling. J Colloid Interface Sci 309:419–428CrossRefGoogle Scholar
  21. Hanna K, Boily J-P (2010) Sorption of two naphthoic acids to goethite surface under flow through conditions. Environ Sci Technol 44:8863–8869CrossRefGoogle Scholar
  22. Hanna K, Carteret C (2007) Sorption of 1-hydroxy-2-naphthoic acid to goethite, lepidocrocite and ferrihydrite: batch experiments and infrared study. Chemosphere 70:178–186CrossRefGoogle Scholar
  23. Hasegawa Y, Yamazaki N, Usui S, Choppin GR (1990) Effects of phenyl groups on thermodynamic parameters of lanthanoid(III) complexation with aromatic carboxylic acids. Bull Chem Soc Jpn 63:2169–2172CrossRefGoogle Scholar
  24. Hayes KF, Redden G, Ela W, Leckie JO (1991) Surface complexation models—an evaluation of model parameter-estimation using FITEQL and oxide mineral titration data. J Colloid Interface Sci 142:448–469CrossRefGoogle Scholar
  25. Hingston FJ, Posner AM, Quirk JP (1972) Anion adsorption by goethite and gibbsite. 1. Role of proton in determining adsorption envelopes. J Soil Sci 23:177–192CrossRefGoogle Scholar
  26. Husin H, Leong Y-K, Liu J (2012) The effects of benzoic acid compounds in α-Al2O3 dispersions: additional attractive forces of particle bridging and precipitate bridging. Colloids Surf A Physicochem Eng Asp 402:159–167CrossRefGoogle Scholar
  27. Koretsky CM, Sverjensky DA, Sahai N (1998) A model of surface site types on oxide and silicate minerals based on crystal chemistry: implications for site types and densities, multi-site adsorption, surface infrared spectroscopy, and dissolution kinetics. Am J Sci 298:349–438CrossRefGoogle Scholar
  28. Kovacevic D, Cop A, Bradetic A, Kallay N, Pohlmeier A, Narres HD, Lewandowski H (2001) Interfacial equilibria at a goethite aqueous interface in the presence of amino acids. Prog Colloid Polym Sci 117:32–36Google Scholar
  29. Kubicki JD, Paul KW, Kabalan L, Zhu Q, Mrozik MK, Aryanpour M, Pierre-Louis AM, Strongin DR (2012) ATIR–FTIR and density functional theory study of the structures, energetics, and vibrational spectra of phosphate adsorbed onto goethite. Langmuir 28:14573–14587CrossRefGoogle Scholar
  30. Kummert R, Stumm W (1980) The surface complexation of organic acids on hydrous γ-Al2O3. J Colloid Interface Sci 75:373–385CrossRefGoogle Scholar
  31. Kung K-H, McBride MB (1989) Adsorption of para-substituted benzoates on iron oxides. Soil Sci Soc Am J 53:1673–1678CrossRefGoogle Scholar
  32. Laufer DA, Gelb RI, Schwartz LM (1984) 13C NMR determination of acid–base tautomerization equilibria. J Org Chem 49:691–696CrossRefGoogle Scholar
  33. Leggate P, Dunn GE (1965) Application of extended Hammett relationship to the ionization constants of substituted anthranilic acids. Can J Chem 43:1158–1174CrossRefGoogle Scholar
  34. Lumsdon DG, Evans LJ (1994) Surface complexation model parameters for goethite (α-FeOOH). J Colloid Interface Sci 164:119–125CrossRefGoogle Scholar
  35. Manet S, Karpichev Y, Bassani D, Kiagus-Ahmad R, Oda R (2010) Counteranion effect on micellization of cationic gemini surfactants 14-2-14: Hofmeister and other counterions. Langmuir 26:10645–10656CrossRefGoogle Scholar
  36. Martell AE, Smith RM, Motekaitis RJ (2004) NIST critically selected stability constants of metal complexes. Version 8.0, NIST Standard Database 46, NIST, Gaithersburg, MDGoogle Scholar
  37. Noren K, Persson P (2007) Adsorption of monocarboxylates at the water/goethite interface: the importance of hydrogen bonding. Geochim Cosmochim Acta 71:5717–5730CrossRefGoogle Scholar
  38. Parfitt RL, Farmer VC, Russell JD (1977) Adsorption on hydrous oxides. I. Oxalate and benzoate on goethite. J Soil Sci 28:29–39CrossRefGoogle Scholar
  39. Prelot B, Villieras F, Pelletier M, Gerard G, Gaboriaud F, Ehrhardt JJ, Perrone J, Fedoroff M, Jeanjean J, Lefevre G, Mazerolles L, Pastol JL, Rouchaud JC, Lindecker C (2003) Morphology and surface heterogeneities in synthetic goethites. J Colloid Interface Sci 261:244–254CrossRefGoogle Scholar
  40. Salazar-Camacho C, Villalobos M (2010) Goethite surface reactivity: III. Unifying arsenate adsorption behavior through a variable crystal face–site density model. Geochim Cosmochim Acta 74:2257–2280CrossRefGoogle Scholar
  41. Schwartz LM, Gelb RI, Mumford-Zisk J, Laufer DA (1987) 13C nuclear magnetic resonance study of acid–base tautomeric equilibria. J Chem Soc Perkin II:453–460CrossRefGoogle Scholar
  42. Schwertmann U, Cornell RM (2000) Iron oxides in the laboratory: preparation and characterization. VCH, New YorkCrossRefGoogle Scholar
  43. Shapley WA, Bacskay GB, Warr GG (1998) Ab initio quantum chemical studies of the pKa’s of hydroxybenzoic acids in aqueous solution with special reference to the hydrophobicity of hydroxybenzoates and their binding to surfactants. J Phys Chem B 102:1938–1944CrossRefGoogle Scholar
  44. Stone AT (1989) Enhanced rates of monophenyl terephthalate hydrolysis in aluminum oxide suspensions. J Colloid Interface Sci 127:429–441CrossRefGoogle Scholar
  45. Stone AT, Torrents A, Smolen J, Vasudevan D, Hadley J (1993) Adsorption of organic compounds possessing ligand donor groups at the oxide/water interface. Environ Sci Technol 27:895–909CrossRefGoogle Scholar
  46. Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn. Wiley-Interscience, NYGoogle Scholar
  47. Tejedor-Tejedor MI, Yost EC, Anderson MA (1992) Characterization of benzoic and phenolic complexes at the goethite/aqueous solution interface using cylindrical internal reflection Fourier transform infrared spectroscopy. 2. Bonding structures. Langmuir 8:525–533CrossRefGoogle Scholar
  48. van Olphen H (1963) An introduction to clay colloid chemistry. Wiley-Interscience, NYGoogle Scholar
  49. Villalobos M, Leckie JO (2000) Carbonate adsorption on goethite under closed and open CO2 conditions. Geochim Cosmochim Acta 64:3787–3802CrossRefGoogle Scholar
  50. Villalobos M, Leckie JO (2001) Surface complexation modeling and FTIR study of carbonate adsorption to goethite. J Colloid Interface Sci 235:15–32CrossRefGoogle Scholar
  51. Villalobos M, Perez-Gallegos A (2008) Goethite surface reactivity: a macroscopic investigation unifying proton, chromate, carbonate, and lead(II) adsorption. J Colloid Interface Sci 326:307–323CrossRefGoogle Scholar
  52. Villalobos M, Trotz MA, Leckie JO (2003) Variability in goethite surface site density: evidence from proton and carbonate sorption. J Colloid Interface Sci 268:273–287CrossRefGoogle Scholar
  53. Villalobos M, Cheney MA, Alcaraz-Cienfuegos J (2009) Goethite surface reactivity: II. A microscopic site-density model that describes its surface area-normalized variability. J Colloid Interface Sci 336:412–422CrossRefGoogle Scholar
  54. Westall J, Hohl H (1980) A comparison of electrostatic models for the oxide/solution interface. Adv Colloid Interface Sci 12:265–294CrossRefGoogle Scholar
  55. Yost EC, Tejedor-Tejedor MI, Anderson MA (1990) In situ CIR–FTIR characterization of salicylate complexes at the goethite/water interface. Environ Sci Technol 24:822–828CrossRefGoogle Scholar
  56. Zhang ZZ, Sparks DL, Scrivner NC (1994) Characterization and modeling of the Al-oxide/aqueous solution interface. I. Measurement of electrostatic potential at the origin of the diffuse layer using negative adsorption of Na+ ions. J Colloid Interface Sci 162:244–251CrossRefGoogle Scholar
  57. Zhang XX, Oscarson JL, Izatt RM, Schuck PC, Li D (2000) Thermodynamics of macroscopic and microscopic proton ionization from protonated 4-aminobenzoic acid in aqueous solution from 298.15 to 393.15 K. J Phys Chem B 104:8598–8605CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Charles F. Whitehead
    • 1
  • Richard F. Carbonaro
    • 2
  • Alan T. Stone
    • 3
  1. 1.Geomega Environmental ConsultingBoulderUSA
  2. 2.Department of Civil and Environmental EngineeringManhattan CollegeRiverdaleUSA
  3. 3.Department of Geography and Environmental EngineeringJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations