Aquatic Geochemistry

, Volume 19, Issue 5–6, pp 399–442 | Cite as

Carbonate Chemistry and Air–Sea CO2 Flux in a NW Mediterranean Bay Over a Four-Year Period: 2007–2011

  • Eric Heinen De Carlo
  • Laure Mousseau
  • Ornella Passafiume
  • Patrick S. Drupp
  • Jean-Pierre Gattuso
Original Paper


The Service d’Observation de la Rade de Villefranche-sur-Mer is designed to study the temporal variability of hydrological conditions as well as the abundance and composition of holo- and meroplankton at a fixed station in this bay of the northwest Mediterranean. The weekly data collected at this site, designated as “Point B” since 1957, represent a long-term time series of hydrological conditions in a coastal environment. Since 2007, the historical measurements of hydrological and biological conditions have been complemented by measurements of the CO2–carbonic acid system parameters. In this contribution, CO2–carbonic acid system parameters and ancillary data are presented for the period 2007–2011. The data are evaluated in the context of the physical and biogeochemical processes that contribute to variations in CO2 in the water column and exchange of this gas between the ocean and atmosphere. Seasonal cycles of the partial pressure of CO2 in seawater (pCO2) are controlled principally by variations in temperature, showing maxima in the summer and minima during the winter. Normalization of pCO2 to the mean seawater temperature (18.5 °C), however, reveals an apparent reversal of the seasonal cycle with maxima observed in the winter and minima in the summer, consistent with a biogeochemical control of pCO2 by primary production. Calculations of fluxes of CO2 show this area to be a weak source of CO2 to the atmosphere during the summer and a weak sink during the winter but near neutral overall (range −0.3 to +0.3 mmol CO2 m−2 h−1, average 0.02 mmol CO2 m−2 h−1). We also provide an assessment of errors incurred from the estimation of annual fluxes of CO2 as a function of sampling frequency (3-hourly, daily, weekly), using data obtained at the Hawaii Kilo Nalu coastal time-series station, which shows similar behavior to the Point B location despite significant differences in climate and hydrological conditions and the proximity of a coral reef ecosystem.


CO2 Carbonic acid Coastal Mediterranean Gas exchange Primary productivity 



We thank the Service d’Observation Rade de Villefranche (SO-Rade) of the Observatoire Océanologique and the Service d’Observation en Milieu Littoral (SOMLIT/CNRS-INSU) for their kind permission to use the Point B data. We also thank Doris Thuillier at the Service National d’Analyse des Paramètres Océaniques du CO2 for performing the analyses of the carbonate system. Atmospheric CO2 data from Plateau Rosa and Lampedusa Island were obtained from the World Data Center for Greenhouse Gases Web site, and we acknowledge the provision of these data sets for broad scientific use. The Plateau Rosa data were collected by Ricerca sul Sistema Energetico—RSE SpA and the Lampedusa data were collected by NOAA/ESRL. Their contributions are especially appreciated. The constructive reviews of Nicholas Bates and Dwight Gledhill are gratefully acknowledged; their efforts helped considerably improve this paper. This work is a contribution to the European Project on Ocean Acidification (EPOCA; contract #211384) and the MedSeA project (Contract #265103), which received funding from the European Community’s Seventh Framework Programme. One of us (EHDC) acknowledges support from the NOAA-Sea Grant College Program (Project R/IR-3 to Eric H. De Carlo under Institutional Grant No. NA05OAR4171048 from NOAA Office of Sea Grant), PacIOOS, and NOAA-PMEL for partial funding of the Hawaii MAP-CO2 buoy program. The views expressed herein are those of the author(s) and do not necessarily reflect the views of NOAA or any of its subagencies. Support from the School of Ocean Sciences and Technology of the University of Hawaii at Manoa for a sabbatical at the Observatoire Océanologique de Villefranche-sur-mer is also gratefully acknowledged. This is UNIHI Sea Grant contribution JC-08-38 and SOEST contribution 9033.


  1. Aminot A, Kérouel R (2007) Dosage automatique des nutriments dans les eaux marines: méthodes en flux continu. Ed. Ifremer, Méthodes d’analyse en milieu marin 188 ppGoogle Scholar
  2. Andersson AJ, Gledhill D (2013) Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Annu Rev Mar Sci 5:1.1–1.28. doi: 10.1146/annurev-marine-121211-172241 CrossRefGoogle Scholar
  3. Andersson AJ, Bates N, Mackenzie FT (2007) Devil’s Hole as a natural laboratory. Meridian 2:14–17Google Scholar
  4. Andersson AJ, Mackenzie FT, Gattuso J-P (2011) Effects of ocean acidification on benthic processes, organisms, and ecosystems. In: Gatusso J-P, Hansson L (eds) Ocean acidification. Oxford University Press, Oxford, pp 122–153Google Scholar
  5. Bates NR (2002) Seasonal variability of the impact of coral reefs on ocean CO2 and air-sea CO2 exchange. Limnol Oceanogr 47(1):43–52CrossRefGoogle Scholar
  6. Bates NR, Samuels L, Merlivat L (2001) Biogeochemical and physical factors influencing seawater fCO2 and Air-Sea CO2 exchange on the Bermuda coral reef. Limnol Oceanogr 46:833–846CrossRefGoogle Scholar
  7. Bégovic M, Copin-Montégut C (2002) Processes controlling annual variations in the partial pressure of CO2 in surface waters of the central northwestern Mediterranean Sea (Dyfamed site). Deep Sea Res II 49(11):2031–2047CrossRefGoogle Scholar
  8. Bonilla-Findji O, Gattuso J-P, Pizay M-D, Weinbauer MG (2010) Autotrophic and heterotrophic metabolism of microbial planktonic communities in an oligotrophic coastal marine ecosystem: seasonal dynamics and episodic events. Biogeosciences 7:2491–3503CrossRefGoogle Scholar
  9. Borges AV, Frankignoulle M (1999) Daily and season variation of the partial pressure of CO2 in surface seawater along Belgian and southern Dutch coastal areas. J Mar Syst 19:251–266CrossRefGoogle Scholar
  10. Borges AV, Gypens N (2010) Carbonate chemistry in the coastal zone responds more strongly to eutrophication than to ocean acidification. Limnol Oceanogr 55:346–353CrossRefGoogle Scholar
  11. Borges AV, Delille B, Frankignoulle M (2005) Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems counts. Geophys Res Lett 32:L14601. doi: 10.1029/2005GL023053 CrossRefGoogle Scholar
  12. Borges AV, Alin SR, Chavez FP et al (2009) (46 others) A Global sea-surface carbon observing system: inorganic and organic carbon dynamics in the coastal oceans. Community white paper (CWP) in Proceedings of OceanObs’09: sustained ocean observations and information for society 21–25 September 2009, Venice, ItalyGoogle Scholar
  13. Bustillos-Guzmán J, Claustre H, Marty JC (1995) Specific phytoplankton signatures and their relationship to hydrographic conditions in the coastal Northwestern Mediterranean Sea. Mar Ecol Prog Ser 124:247–258CrossRefGoogle Scholar
  14. Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365CrossRefGoogle Scholar
  15. Coantic M (1986) A model of gas transfer across air-water interfaces with capillary waves. J Geophys Res 91:3925–3943CrossRefGoogle Scholar
  16. Copin-Montégut C, Bégovic M (2002) Distribution of carbonate properties and oxygen along the water column (0–2000 m) in the central part of the NW Mediterranean Sea (Dyfamed site)L influence of winter vertical mixing on air-sea CO2 and O2 exchanges. Deep Sea Res II 49:2049–2066CrossRefGoogle Scholar
  17. De Carlo EH, Hoover DJ, Young CW, Hoover RS, Mackenzie FT (2007) Impact of storm runoff from subtropical watersheds on coastal water quality and productivity. Appl Geochem 22:1777–1797. doi: 10.1016/j.apgeochem.2007.03.034 CrossRefGoogle Scholar
  18. Dickson AG (1990) Standard potential of the reaction: AgCI(s) + 1/2H2(g) = Ag(s) + HCI(aq), and the standard acidity constant of the ion HSO4 in synthetic sea water from 273.15 to 318.15 K. J Chem Thermodyn 22:113–127CrossRefGoogle Scholar
  19. Dickson AG, Riley JP (1978) The effect of analytical error on the evaluation of the components of the aquatic carbon-dioxide system. Mar Chem 6:77–85CrossRefGoogle Scholar
  20. Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements. PICES Special Publication, vol 3, pp 1–191Google Scholar
  21. DOE (1974) Handbook of methods for the analysis of the various parameters of the carbon dioxide system in seawater. Version 2. In: Dickson AG, Goyet C (eds) ORNL/CDIAC-74Google Scholar
  22. Dolan JR, Thingstad TF, Rassoulzadegan F (1995) Phosphate transfer between microbial size-fractions in Villefranche Bay (NW Mediterranean Sea), France in autumn 1992. Ophelia 41:71–85Google Scholar
  23. Doney SC, Mahowald N, Lima I, Feely RA, Mackenzie FT (2007) Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proc Natl Acad Sci 104:14580–14585CrossRefGoogle Scholar
  24. Doney SC, Fabry VJ, Feely RA, Kleypas J (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192CrossRefGoogle Scholar
  25. Dore JE, Lukas R, Sadler DW, Church MJ, Karl DM (2009) Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc Natl Acad Sci USA. doi: 10.1073/pnas.0906044106 Google Scholar
  26. Drupp P, De Carlo EH, Mackenzie FT, Bienfang P, Sabine C (2011) Nutrient inputs, phytoplankton response and CO2 variations in a semi-enclosed subtropical embayment, Kaneohe Bay, Hawaii. Aquat Geochem 17(4):473–498CrossRefGoogle Scholar
  27. Drupp PS, De Carlo EH, Mackenzie FT, Sabine CL, Feely RA, Shamberger KF (2013) A comparison of CO2 dynamics and air-sea exchange in differing tropical reef environments. Aquat Geochem. doi: 10.1007/s10498-013-9214-7 Google Scholar
  28. Edmond JM (1970) High precision determination of titration alkalinity and total carbon dioxide content of sea water by potentiometric titration. Deep Sea Res 17:737–750Google Scholar
  29. Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366CrossRefGoogle Scholar
  30. Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B (2008) Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1490–1492CrossRefGoogle Scholar
  31. Ferrier-Pagès C, Rassoulzadegan F (1994) Seasonal impact of the microzooplankton on pico- and nanoplankton growth rates in the NW Mediterranean Sea. Mar Ecol Prog Ser 108:283–294CrossRefGoogle Scholar
  32. Frankignoulle M (1988) Field measurements of air-sea CO2 exchange. Limnol Oceanogr 33(3):313–322CrossRefGoogle Scholar
  33. Frankignoulle M, Bourge I, Wollast R (1996a) Atmospheric CO2 fluxes in a highly polluted estuary (the Scheldt). Limnol Oceanogr 41(2):365–369CrossRefGoogle Scholar
  34. Frankignoulle M, Gattuso J, Biondo R, Bourge I, Copin-Montegut G, Pichon M (1996b) Carbon fluxes in coral reefs. II. Eulerian study of inorganic carbon dynamics and measurement of air-sea CO2 exchanges. Mar Ecol Prog Ser 145:123–132CrossRefGoogle Scholar
  35. Freidlingstein P, Houghton RA, Marland G, Hackler J, Boden TA, Conway TJ, Canadell JG, Raupach MR, Ciais P, LeQuéré C (2010) Update on CO2 emissions. Nat Geosci 3:811–812CrossRefGoogle Scholar
  36. Gazeau F, Duarte CM, Gattuso J-P, Barron C, Navarro N, Ruiz S, Prairie YT, Calleja M, Delille B, Frankignoule M, Borges AV (2005) Whole-system metabolism and CO2 fluxes in a Mediterranean Bay dominated by seagrass beds (Palma Bay, NW Mediterranean). Biogeosciences 2:43–60CrossRefGoogle Scholar
  37. Gypens N, Lacroix G, Lancelot C, Borges AV (2011) Seasonal and inter-annual variability of air–sea CO2 fluxes and seawater carbonate chemistry in the southern North Sea. Prog Oceanogr 88:59–77CrossRefGoogle Scholar
  38. Ho DT, Law CS, Smith MJ, Schlosser P, Harvey M, Hill P (2006) Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: implications for global parameterization. Geophys Res Lett 31:L16611CrossRefGoogle Scholar
  39. Jacques G (1969) Aspects quantitatifs du phytoplankton de Banyuls- sur- Mer (Golfe de Lion). Diatomees et dinoflagelles. Vie Milieu 20:91–126Google Scholar
  40. Jacquet S, Lennon JF, Marie D, Vaulot D (1998) Picoplankton population dynamics in coastal waters of the northwestern Mediterranean Sea. Limnol Oceanogr 43:1916–1931Google Scholar
  41. Jahne B, Heinz G, Dietrich W (1987) Measurement of the diffusion coefficients of sparingly soluble gases in water with a modified Barrier method. J Geophys Res 92:10767–10776CrossRefGoogle Scholar
  42. Lacroix G, Nival P (1998) Influence of meteorological variability on primary production dynamics in the N. Ligurian Sea (NW Mediterranean Sea) with a 1D hydrodynamic/biological model. J Mar Syst 16:23–50CrossRefGoogle Scholar
  43. Lavigne H, Gattuso J-P (2011) Seacarb: seawater carbonate chemistry with R. R package version 2.4.
  44. Ledwell JR (1984) The variation of the gas transfer coefficient with molecular diffusivity. In: Brutsaert W, Jirka GH (eds) Gas transfer at water surfaces. Edited by D. Reidel, Hingham pp 293–302Google Scholar
  45. Lee K, Tae-Wook K, Byrne RH, Millero FJ, Feely RA, Liu Y-M (2010) The universal ratio of the boron to chlorinity for the North Pacific and North Atlantic oceans. Geochim Cosmochim Acta 74:1801–1811CrossRefGoogle Scholar
  46. Liss PS (1983) Gas transfer: experiments and geochemical implications. In: Liss PS, Slinn WGN (eds) Air-sea exchange of gases and particles. Dordrecht, The Netherlands: Reidel, pp 241–299 Google Scholar
  47. Liss PS, Merlivat L (1986) Air–sea gas exchange rates: Introduction and synthesis. In: Buat-Ménard P (ed) The role of air–sea exchange in geochemical cycling. Springer, New York, pp 113–127CrossRefGoogle Scholar
  48. Lueker TJ, Dickson AG, Keeling CD (2000) Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2; validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar Chem 70:105–119CrossRefGoogle Scholar
  49. Lüthi D, Le Floch M, Bereiter B, Blunier T, Barnola J-M, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–382CrossRefGoogle Scholar
  50. Mackenzie FT, De Carlo EH, Lerman A (2012) Chapter 12: coupled C, N, P, and O cycling at the land ocean interface. In: Middleberg J (ed) Treatise on coastal and estuarine science, vol 5. Elsevier Publishers, AmsterdamGoogle Scholar
  51. Massaro RFS, De Carlo EH, Drupp P, Mackenzie FT, Maenner-Jones S, Fagan KE, Sabine CL, Feely RA (2012) Multiple factors driving variability in the exchange of CO2 between the ocean and atmosphere in a tropical coral reef environment. Aquat Geochem 18(4):357–386. doi: 10.1007/s10498-012-9170-7 CrossRefGoogle Scholar
  52. Millot C (1987) Circulation in the Western Mediterranean Sea. Oceanol Acta 10:143–149Google Scholar
  53. Millot C (1999) Circulation in the Western Mediterranean Sea. J Mar Syst 20:423–442CrossRefGoogle Scholar
  54. Nightingale PD, Malin G, Law CS, Watson AJ, Liss PS, Liddicoat MI, Boutin J, Upstill-Goddard RC (2000) In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochem Cycles 14(1):373–387CrossRefGoogle Scholar
  55. Nival P, Corre MC (1976) Variation annuelle des characteristiques hydrologiques de surface dans la baie de Villefranche-sur-Mer. Ann Inst Océanogr Paris 52:57–78Google Scholar
  56. Ohde S, van Woesik R (1999) Carbon dioxide flux and metabolic processes of a coral reef, Okinawa. Bull Mar Sci 65(2):559–576Google Scholar
  57. Orr JC (2011) Recent and future changes in ocean carbonate chemistry. In: Gattuso J-P, Hansson L (eds) Ocean acidification. Oxford University Press, Oxford, pp 41–66Google Scholar
  58. Orr JC, Fabry VJ, Aumont O et al (2005) Anthropogenic ocean acidification over the twenty first century and its impacts on calcifying organisms. Nature 437:681–686CrossRefGoogle Scholar
  59. Ovchinnikov IM (1966) Circulation in the surface and intermediate layers of the Mediterranean. Oceanology 6:48–59Google Scholar
  60. Perez FF, Fraga F (1987) The pH measurements in seawater on NBS scale. Mar Chem 21:315–327CrossRefGoogle Scholar
  61. Selmer JS, Ferrier-Pagès C, Cellario C, Rassoulzadegan F (1993) New and regenerated production in relation to the microbial loop in the NW Mediterranean Sea. Mar Ecol Prog Ser 100:71–83CrossRefGoogle Scholar
  62. Shamberger KEF, Feely RA, Sabine CL, Atkinson MJ, DeCarlo EH, Mackenzie FT, Drupp PS, Butterfield DA (2011) Calcification and organic production on a Hawaiian coral reef. Mar Chem 127:64–75CrossRefGoogle Scholar
  63. Siegenthaler U, Stocker TF, Monnin E et al (2005) Stable carbon cycle: climate relationship during the late pleistocene. Science 310(5751):1313–1317CrossRefGoogle Scholar
  64. Smith SV, Hollibaugh JT (1993) Coastal metabolism and the oceanic organic carbon balance. Rev Geophys 31(1):75–89CrossRefGoogle Scholar
  65. Takahashi T, Olafsson J, Goddard JG, Chipman DW, Sutherland SC (1993) Seasonal-variation of CO2 and nutrients in the high-latitude surface oceans: a comparative-study. Global Biogeochem Cycles 7:843–878CrossRefGoogle Scholar
  66. Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, Olafsson J, Nojiri Y (2002) Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Res II 49:1601–1622CrossRefGoogle Scholar
  67. Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA, Chipman DW, Hales B, Friederich G, Chavez F, Sabine C, Watson A, Bakker DCE, Schuster U, Metzl N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Koritzingerm A, Steinhoffm T, Hoppema M, Olafsson J, Arnarson TS, Tilbrrok B, Johannessen T, Olsen A, Bellerby R, Wong CS, Delille B, Bates NR, Debar HJW (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res II 56:554–577CrossRefGoogle Scholar
  68. Thingstad F, Zweifel UL, Rassoulzadegan F (1998) Limitation of heterotrophic bacteria and phytoplankton in the northwest Mediterranean. Limnol Oceanogr 43:88–94CrossRefGoogle Scholar
  69. Travers M (1973) The microplankton of the Gulf of Marseille: variation in community composition and population density. Tethys 5:31–53Google Scholar
  70. Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97:7373–7382CrossRefGoogle Scholar
  71. Wanninkhof R, McGillis WR (1999) A cubic relationship between air-sea CO2 exchange and wind speed. Geophys Res Lett 26(13):1889–1892CrossRefGoogle Scholar
  72. Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–215CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Eric Heinen De Carlo
    • 1
  • Laure Mousseau
    • 2
    • 3
  • Ornella Passafiume
    • 2
    • 3
  • Patrick S. Drupp
    • 1
  • Jean-Pierre Gattuso
    • 2
    • 3
  1. 1.Department of OceanographyUniversity of Hawaii at ManoaHonoluluUSA
  2. 2.Laboratoire d’Océanographie de Villefranche-sur-MerCNRS-INSUVillefranche-sur-Mer CedexFrance
  3. 3.Observatoire Océanologique de VillefrancheUniversité Pierre et Marie Curie-Paris 6Villefranche-sur-MerFrance

Personalised recommendations