Chemical Dynamics and Evaluation of Biogeochemical Processes in Alpine River Kamniška Bistrica, North Slovenia

Abstract

Biogeochemical processes were investigated in alpine river—Kamniška Bistrica River (North Slovenia), which represents an ideal natural laboratory for studying anthropogenic impacts in catchments with high weathering capacity. The Kamniška Bistrica River water chemistry is dominated by HCO3 , Ca2+ and Mg2+, and Ca2+/Mg2+ molar ratios indicate that calcite weathering is the major source of solutes to the river system. The Kamniška Bistrica River and its tributaries are oversaturated with respect to calcite and dolomite. pCO2 concentrations were on average up to 25 times over atmospheric values. δ13CDIC values ranged from −12.7 to −2.7 ‰, controlled by biogeochemical processes in the catchment and within the stream; carbonate dissolution is the most important biogeochemical process affecting carbon isotopes in the upstream portions of the catchment, while carbonate dissolution and organic matter degradation control carbon isotope signatures downstream. Contributions of DIC from various biogeochemical processes were determined using steady state equations for different sampling seasons at the mouth of the Kamniška Bistrica River; results indicate that: (1) 1.9–2.2 % of DIC came from exchange with atmospheric CO2, (2) 0–27.5 % of DIC came from degradation of organic matter, (3) 25.4–41.5 % of DIC came from dissolution of carbonates and (4) 33–85 % of DIC came from tributaries. δ15N values of nitrate ranged from −5.2 ‰ at the headwater spring to 9.8 ‰ in the lower reaches. Higher δ15N values in the lower reaches of the river suggest anthropogenic pollution from agricultural activity. Based on seasonal and longitudinal changes of chemical and isotopic indicators of carbon and nitrogen in Kamniška Bistrica River, it can be concluded that seasonal changes are observed (higher concentrations are detected at low discharge conditions) and it turns from pristine alpine river to anthropogenic influenced river in central flow.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Amundson R, Gao Y, Gang P (2003) Soil diversity and land use in the United States. Ecosyst 6:470–482

    Article  Google Scholar 

  2. Atkins PW (1994) Physical chemistry. Oxford University press, Oxford

    Google Scholar 

  3. Aucour AM, Sheppard SMF, Guyomar O, Wattelet J (1999) Use of 13C to trace the origin and cycling of inorganic carbon in the Rhône river system. Chem Geol 159:87–105

    Article  Google Scholar 

  4. Barth JAC, Veizer J (1999) Carbon cycle in St. Lawrence aquatic ecosystems at Cornwall Ontario/Canada: seasonal and spatial variations. Chem Geol 159:107–128

    Article  Google Scholar 

  5. Barth JAC, Cronin AA, Dunlop J, Kalin RM (2003) Influence of carbonates on the riverine carbon cycle in an anthropogenically dominated catchment basin: evidence from major elements and stable carbon isotopes in the Lagan River (N. Ireland). Chem Geol 200:203–216

    Article  Google Scholar 

  6. Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nat Geosci 2:598–600

    Article  Google Scholar 

  7. Beller HR, Madrid V, Hudson GB, McNab WW, Carlsen T (2004) Biogeochemistry and natural attenuation of nitrate in groundwater at an explosives test facility. Appl Geochem 19:1483–1494

    Article  Google Scholar 

  8. Ben Othmann D, Luck JM, Tournoud MG (1997) Geochemistry and water dynamics: application to short time-scale flood phenomena in a small Mediterranean catchment. I. Alkalis, alkali-earth and Sr isotopes. Chem Geol 140:9–28

    Article  Google Scholar 

  9. Berner EK, Berner RA (1996) Global environment, water, air, and geochemical cycles. Prentice Hall, Upper Saddle River

    Google Scholar 

  10. Broecker WS (1974) Chemical oceanography. Harcourt Brace Jovanovich, New York

    Google Scholar 

  11. Broecker HC, Peterman J, Siems W (1978) The influence of wind on CO2—exchange in a wind—wave tunnel, including the effects of monolayers. J Mar Res 36:595–610

    Google Scholar 

  12. Burt TP, Trudgill ST (1993) Nitrate in groundwater. In: Burt TP et al (eds) Nitrate: processes, patterns and management. Wiley, Chichester

  13. Buser S (1987) Geological map of Slovenia. In: Encyclopedia of Slovenia no. 8, Mladinska knjiga, Ljubljana (in Slovene)

  14. Camargo JA, Alonso A (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Internat 32:831–849

    Article  Google Scholar 

  15. Cartwright I (2010) The origins and behavior of carbon in a major semi-arid river, the Murray River, Australia, 2010 as constrained by carbon isotopes and hydrochemistry. Appl Geochem 25:1734–1745

    Article  Google Scholar 

  16. Chang CCY, Kendall C, Silva SR, Battaglin WA, Campbell DH (2002) Nitrate stable isotopes: tools for determining nitrate sources among different land uses in the Mississippi River Basin. Can J Fish Aquat Sci 59:1874–1885

    Article  Google Scholar 

  17. Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, New York

    Google Scholar 

  18. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184

    Article  Google Scholar 

  19. Devol AH, Hedges JI (2001) Organic matter nutrients in the main stem Amazon River. In: McClaim ME, Victoria RL, Richey JE (eds) The biogeochemistry of the Amazon basin. Oxford University Press, Oxford, pp 275–306

    Google Scholar 

  20. Doctor DH, Kendall C, Sebestyen SD, Shanley JB, Ohte N, Boyer EW (2008) Carbon isotope fractionation of dissolved inorganic carbon (DIC) due to outgassing of carbon dioxide from a headwater stream. Hydrol Process 22:2410–2423

    Article  Google Scholar 

  21. Drever L, Durand R, Fontes JCh, Vaicher P (1983) Etude pédogénétique et isotopique des néoformations de calcite dans un sol sur craie. Caractéristiques et origins, Geochim Cosmochim Acta 47:2079–2090

    Article  Google Scholar 

  22. EIONET European Environment Information and Observation Network http://www.eionet-en.arso.gov.si, 2005

  23. Elderfield H, Upstill-Goddard R, Sholkovitz ER (1990) The rare earth elements in rivers, estuaries and coastal seas and their significance to the composition of ocean waters. Geochim Cosmochim Acta 54:971–997

    Article  Google Scholar 

  24. Freyer HD (1991) Seasonal variation of 15N/14N ratios in atmospheric nitrate species. Tellus 43 B:30–44

    Google Scholar 

  25. Fukada T, Hiscock KM, Dennis PF, Grischek T (2003) A dual isotope approach to identify denitrification in groundwater at a river-bank infiltration site. Water Res 37:3070–3078

    Article  Google Scholar 

  26. Gaillardet J, Dupre B, Allegre CJ (1991) Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? Geochim Cosmochim Acta 63:4037–4051

    Article  Google Scholar 

  27. Gaillardet J, Dupre B, Louvat P, Allegre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30

    Article  Google Scholar 

  28. Gibbs RJ (1972) Water chemistry of the Amazon River. Geochim Cosmochim Acta 36:1061–1066

    Article  Google Scholar 

  29. Gieskes JM (1974) The alkalinity-total carbon dioxide system in seawater. In: Goldberg ED (ed) Marine chemistry of the sea, vol 5. Wiley, New York, pp 123–151

    Google Scholar 

  30. Hagedorn B, Cartwright I (2010) The CO2 system in rivers of the Australian Victorian Alps: CO2 evasion in relation to system metabolism and rock weathering on multi-annual time scales. Appl Geochem 25:881–899

    Article  Google Scholar 

  31. Harrington RR, KennedyBP, Chamberlain CP, Blum JD, Flot CL (1998) 15N enrichment in agricultural catchments: field patterns and applications to tracking Atlantic salmon (Salmo salar). Chem Geol 147:281–294

  32. Heaton THE (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem Geol Isotope Geosci Sect 59:87–102

    Article  Google Scholar 

  33. Hebert CG, Wassenaar LI (2001) Stable nitrogen isotopes in waterfowl feathers reflects agricultural land use in western Canada. Environ Sci Technol 35:3482–3487

    Article  Google Scholar 

  34. Hedges JI (1992) Global biogeochemical cycle: progress and problem. Mar Chem 39(67–93):1992

    Google Scholar 

  35. Hélie JF, Hillare-Marcel C, Rondeau B (2002) Seasonal changes in the sources and fluxes of dissolved inorganic carbon through the St. Lawrence River-isotopic and chemical constraint. Chem Geol 186:117–138

    Article  Google Scholar 

  36. Holley EH (1997) Oxygen transfer at the air–water interface. In: Gibbs RJ (ed) Transport processes in lakes and oceans, proceedings of the symposium on transport processes in the Ocean held at the 82nd national meeting of the AICE, Atlantic City, N. J. Aug. 29.–Sep. 1, 1976. Plenum Press, New York, pp 117–150

  37. Hrvatin M (1998) Discharge regimes in Slovenia. Geografski zbornik XXXVIII:60–87

  38. Hu MH, Stallard RF, Edmond JM (1982) Major ion chemistry of some large Chinese rivers. Nature 298:550–553

    Article  Google Scholar 

  39. Huh Y, Tsoi MY, Zaitsev A, Edmond JM (1998) The fluvial geochemistry of the rivers of Eastern Siberia: I. Tributaries of the Lena River draining the sedimentary platform of the Siberian Craton. Geochim Cosmochim Acta 62:1657–1676

    Article  Google Scholar 

  40. Ittekkot V (1988) Global trends in the nature of organic matter in the river suspensions. Nature 332:436–438

    Article  Google Scholar 

  41. Jähne B, Heinz G, Dietrich W (1987) Measurements of the Diffusion Coefficients of sparingly soluble gases in water. J Geophys Res 92:10767–10776

    Article  Google Scholar 

  42. Jamnik B, Refsgaard A, Janža M, Kristensen M (2001) Water resources management model for Ljubljana City. In: Brancelj IR, Smrekar A, Kladnik D (eds) Podtalnica Ljubljanskega polja. Geografija Slovenije 10:251 (in Slovene)

  43. Janža M, Prestor J (2002) Karta ranljivosti s parametri, Preverba in dopolnitev strokovnih podlag za določitev varstvenih pasov vodnih virov centralnega sistema oskrbe s pitno vodo v MOL-Ljubljansko polje. Ljubljana (in Slovene)

  44. Jogan N, Kotarac M, Lešnik A (eds) (2004) Identification of sites containing non-forest natural habitat types of Community importance by using ranges of characteristic plant species. Centre for Cartography of Fauna and Flora, Miklavž na Dravskem polju, 961 pp (in Slovene). Available online: http://www.natura2000.gov.si/projektivec/pregled_nalog.htm

  45. Kanduč T (2006) Hydrogeochemical characteristics and carbon cycling in the Sava River watershed in Slovenia. University of Ljubljana, Dissertation

    Google Scholar 

  46. Kanduč T, Szramek K, Ogrinc N, Walter LM (2007) Origin and cycling of riverine inorganic carbon in the Sava River watershed (Slovenia) inferred from major solutes and stable carbon isotopes. Biogeochem 86:137–154

    Article  Google Scholar 

  47. Kanduč T, Kocman D, Ogrinc N (2008) Hydrogeochemical and stable isotope characteristics of the river Idrijca (Slovenia), the boundary watershed between the Adriatic and Black seas. Aquat Geochem 14:239–262

    Article  Google Scholar 

  48. Kanduč T, Mori N, Kocman D, Stibilj V, Grassa F (2012) Hydrogeochemistry of alpine springs from North Slovenia: insights from stable isotopes. Chem Geol 300–301:40–45

    Article  Google Scholar 

  49. Karim A, Veizer J (2000) Weathering processes in the Indus River Basin: implications from riverine carbon, sulfur, oxygen and strontium isotopes. Chem Geol 170:153–177

    Article  Google Scholar 

  50. Kellman LM, Hillaire-Marcel C (2003) Nitrate cycling in streams: using natural abundance of NO3 15N to measure in situ denitrification. Biogeochemistry 43:303–321

    Google Scholar 

  51. Kempe S, Pettine M, Cauwet G (1991) Biogeochemistry of European rivers. In: Kempe S, Degens ET, Richey JE (eds) Biogeochemistry of major world rivers. Wiley, New York, SCOPE/UNEP 42, pp 169–211

  52. Kendall C (1998) Tracing nitrogen sources and cycling in catchments. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 519–576

    Google Scholar 

  53. Levin I, Kromer B, Wagenback D, Minnich KO (1987) Carbon isotope measurements of atmospheric CO2 at a coastal station in Antarctica. Tellus 39 B:89–95

    Google Scholar 

  54. Liu Z, Zhao J (2000) Contribution of carbonate rock weathering to the atmospheric CO2 sink. Environ Geol 39:1053–1058

    Article  Google Scholar 

  55. Livingstone DA (1963) Chemical composition of rivers and lakes. U. S. Geol. Survey Prof Paper, p 44-G

  56. Marinček M, Čarni A (2002) Commentary to the vegetation map of forest communities of Slovenia in scale of 1:400,000, Založba ZRC, Biološki inštitut Jovana Hadžija ZRC SAZU

  57. Mayer B, Boyer EW, Goodale C, Jaworski NA, van Breemen N, Howarth RW, Seitzinger S, Billen G, Lajtha K, Nadelhoffer K, Van Dam D, Hetling LJ, Nosal M, Paustian K (2002) Sources of nitrate in rivers draining sixteen watersheds in the northeastern U.S.: Isotopic constraints. Biogeochemistry 57/58:171–192

  58. Mayorga E, Aufdenkampe AK, Masiello CA, Krusche AV, Hedges JI, Quay PD, Richey JE, Brown TA (2005) Young organic matter as a source of carbon dioxide outgassing from Amazon rivers. Nature 436:538–541

    Article  Google Scholar 

  59. Meybeck M. (1981) River transport of organic carbon to the ocean. In: Likens GE, Mackenzie FT, Richey JE, Sedell JR, Turekian KK (eds) Flux of organic carbon to the oceans, pp 219–269, U. S. D.O.E. CONF-8009140, Nat. Tech. Ing. Serr., Springfield

  60. Meybeck M (1982) Carbon, nitrogen and phosphorus transport by world rivers. Am J Sci 282:401–450

    Article  Google Scholar 

  61. Meybeck M (1993) Natural sources of C, N, P and S. NATO ASI series, vol. 14. Interactions of C, N, P and S, biogeochemical cycles and global change. Springer, Berlin, pp 163–193

  62. Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Eath Planet Sci Lett 22:169–176

    Article  Google Scholar 

  63. National Research Council (2000) Clean coastal waters: understanding and reducing the effects of nutrient pollution. National Academic Press, Washington

    Google Scholar 

  64. Négrel P, Lachassagne P (2000) Geochemistry of the Maroni River (French Guiana) during the low water stage: implications for water-rock interactions and groundwater characteristics. J Hydrol 237:212–233

    Article  Google Scholar 

  65. Ogrinc N, Markovics R, Kanduč T, Walter LM, Hamilton SK (2008) Sources and transport of carbon and nitrogen in the River Sava watershed, a major tributary of the river Danube. Appl Geochem 23:3685–3698

    Article  Google Scholar 

  66. Palmer SM, Hope D, Billett MF, Dawson JJ, Bryant CL (2001) Sources of organic and inorganic carbon in a headwater stream: evidence from carbon isotope studies. Biogeochemistry 52:321–338

    Article  Google Scholar 

  67. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigations Report 99-4259

  68. Pawellek F, Frauenstein F, Veizer J (2002) Hydrogeochemistry and isotope geochemistry of the upper Danube River. Geochim Cosmochim Acta 66:3839–3854

    Article  Google Scholar 

  69. Pearl HW, Dennis RL, Whitall DR (2002) Atmospheric deposition of nitrogen: implications for nutrient over-enrichment of coastal waters. Estuaries 25:677–693

    Article  Google Scholar 

  70. Petelet E, Luck JM, Ben Othmna D, Négrel Ph, Aquilina L (1998) Geochemistry and water dynamics on a medium sized watershed: the Herault, S France. Chem Geol 150:63–83

    Article  Google Scholar 

  71. Radinja D, Grbović J, Povž M, Zupan M, Skoberne P (1987) Javornik M (ed) Kamniška Bistrica: in Encyclopedia Slovenia 4. Mladinska knjiga, Ljubljana, pp 382 (in Slovene)

  72. Raymond PA, Zappa CJ, Butman D, Bott TL, Potter J, Mulholland P, Lauersen AE, McDowell WH, Newbold D (2012) Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol Oceanogr Fluids Environ 2:41–53. doi:10.1215/21573689-1597669

    Google Scholar 

  73. Reeder SW, Hitchon B, Levinson AA (1972) Hydrogeochemistry of the surface waters of the Mackenzie River drainage basin, Canada: 1. Factors controlling inorganic composition. Geochim Cosmochim Acta 36:181–192

    Article  Google Scholar 

  74. Schulte P, Van Geldern R, Freitag H, Karim A, Négrel P, Petelet-Giraud E, Probst A, Telmer K, Veizer J, Barth JAC (2011) Applications of stable water and carbon isotopes in watershed research: weathering, carbon cycling, and water balances. Earth-Sci Rev 109:20–31

    Google Scholar 

  75. Schuster PF, Reddy MM (2001) Particulate Carbon (PC) and Particulate Nitrogen (PN). In: Water and sediment quality in the Yukon River Basin, Alaska, during water year 2001. Open-file report 03-427, National Research Program, USGS, available online: http://pubs.usgs.gov/of/2003/ofr03427/

  76. Sempere R, Charriere B, Wambeke FV, Cauwe G (2000) Carbon inputs of the Rhone River to the Mediterranean Sea: biogeochemical implications. Global Biogeochem Cycles 14:669–681

    Article  Google Scholar 

  77. Silva SR, Kendall C, Wilkison DH, Ziegler AC, Chang CC, Avanzino RJ (2000) A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios. J Hydrol 228:22–36

    Article  Google Scholar 

  78. Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro) aggregates, soil biota, and soil organic dynamics. Soil Tillage Res 79:7–31

    Article  Google Scholar 

  79. Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems: a global problem. Environ Sci Pollut Res 10:126–139

    Article  Google Scholar 

  80. Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  81. Šturm M, Lojen S (2011) Nitrogen isotopic signature of vegetables from the Slovenian market and its suitability as an indicator of organic production. Isot Environ Health Stud 47:214–220

    Article  Google Scholar 

  82. Summerfield MA (ed) (1991) Global geomorphology. an introduction to the study of landforms. Longman Scientific & Technical, New York, p 537

  83. Szramek K, McIntoch JC, Williams EL, Kanduč T, Ogrinc N, Walter LM (2007) Relative weathering intensity of calcite versus dolomite in carbonate-bearing temperature zone watersheds: carbonate geochemistry and fluxes from catchments within the St. Lawrence and Danube river basin. Geochem Geophys Geosys 8:1–26

    Article  Google Scholar 

  84. Telmer K, Veizer J (1999) Carbon fluxes, pCO2 and substrate weathering in a large northern river basin, Canada: carbon isotope perspectives. Chem Geol 159:61–86

    Article  Google Scholar 

  85. Ter Braak CJF, Šmilauer P (2002) CANOCO, version 4.5

  86. Urbanc J, Cerar S, Stražar A (2012) Hydrochemical characteristics of groundwater from the Kamniškobistriško field aquifer. RMZ Mater Geoenviron 59(2/3):213–228

    Google Scholar 

  87. Vižintin G, Souvent P, Veselič M, Čenčur Curk B (2009) Determination of urban groundwater pollution in alluvial aquifer using linked process models considering urban water cycle. J Hydrol 377:261–273

    Article  Google Scholar 

  88. Voss M, Deutsch B, Elmgren R, Humborg C, Kuuppo P, Patuszak M, Rolff C, Schulte U (2006) Source identification of nitrate by means of isotopic tracers in the Baltic Sea catchments. Biogeosciences 3:663–676

    Article  Google Scholar 

  89. Wachniew P (2006) Isotopic composition of dissolved inorganic carbon in a large polluted river: the Vistula, Poland. Chem Geol 233:293–308

    Article  Google Scholar 

  90. Wetzel RG (2001) Limnology, 3rd edn. Academic Press, New York

    Google Scholar 

  91. Wu Y, Zhang J, Liu SM, Zhang ZF, Yao QZ, Hong GH, Cooper L (2007) Sources and distribution of carbon within the Yangtze River system. Estuar Coast Shelf Sci 71:13–25

    Article  Google Scholar 

  92. Yang C, Telmer K, Veizer J (1996) Chemical dynamics of the ‘St. Lawrance’ riverine system: δDH2O, δ18OH2O, δ13CDIC, δ34Ssulfate, and dissolved 87Sr/86Sr. Geochim Cosmochim Acta 60:851–866

    Article  Google Scholar 

  93. Zhang J, Quay PD, Wilbur DO (1995) Carbon isotope fractionation during gas–water exchange and dissolution of CO2. Geochim Cosmochim Acta 59:107–1146

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the state budget by the Slovenian Research Agency, Young Researcher Programme contract No. 1000-06-310015 and Programme research group “Cycling of nutrients and contaminants in the environment, mass balances and modelling environmental processes and risk analysis” (P1-0143). The authors would also like to thank Patrik Kušter and Mr. Ivan Kanduč for their help in field and David Kocman and Stojan Žigon for technical support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tjaša Kanduč.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 84 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kanduč, T., Šturm, M.B. & McIntosh, J. Chemical Dynamics and Evaluation of Biogeochemical Processes in Alpine River Kamniška Bistrica, North Slovenia. Aquat Geochem 19, 323–346 (2013). https://doi.org/10.1007/s10498-013-9197-4

Download citation

Keywords

  • Biogeochemical processes
  • Hydrogeochemistry
  • Stable isotopes
  • Anthropogenic pollution
  • River systems