Advertisement

Aquatic Geochemistry

, Volume 19, Issue 4, pp 323–346 | Cite as

Chemical Dynamics and Evaluation of Biogeochemical Processes in Alpine River Kamniška Bistrica, North Slovenia

  • Tjaša Kanduč
  • Martina Burnik Šturm
  • Jennifer McIntosh
Original Paper

Abstract

Biogeochemical processes were investigated in alpine river—Kamniška Bistrica River (North Slovenia), which represents an ideal natural laboratory for studying anthropogenic impacts in catchments with high weathering capacity. The Kamniška Bistrica River water chemistry is dominated by HCO3 , Ca2+ and Mg2+, and Ca2+/Mg2+ molar ratios indicate that calcite weathering is the major source of solutes to the river system. The Kamniška Bistrica River and its tributaries are oversaturated with respect to calcite and dolomite. pCO2 concentrations were on average up to 25 times over atmospheric values. δ13CDIC values ranged from −12.7 to −2.7 ‰, controlled by biogeochemical processes in the catchment and within the stream; carbonate dissolution is the most important biogeochemical process affecting carbon isotopes in the upstream portions of the catchment, while carbonate dissolution and organic matter degradation control carbon isotope signatures downstream. Contributions of DIC from various biogeochemical processes were determined using steady state equations for different sampling seasons at the mouth of the Kamniška Bistrica River; results indicate that: (1) 1.9–2.2 % of DIC came from exchange with atmospheric CO2, (2) 0–27.5 % of DIC came from degradation of organic matter, (3) 25.4–41.5 % of DIC came from dissolution of carbonates and (4) 33–85 % of DIC came from tributaries. δ15N values of nitrate ranged from −5.2 ‰ at the headwater spring to 9.8 ‰ in the lower reaches. Higher δ15N values in the lower reaches of the river suggest anthropogenic pollution from agricultural activity. Based on seasonal and longitudinal changes of chemical and isotopic indicators of carbon and nitrogen in Kamniška Bistrica River, it can be concluded that seasonal changes are observed (higher concentrations are detected at low discharge conditions) and it turns from pristine alpine river to anthropogenic influenced river in central flow.

Keywords

Biogeochemical processes Hydrogeochemistry Stable isotopes Anthropogenic pollution River systems 

Notes

Acknowledgments

The authors acknowledge financial support from the state budget by the Slovenian Research Agency, Young Researcher Programme contract No. 1000-06-310015 and Programme research group “Cycling of nutrients and contaminants in the environment, mass balances and modelling environmental processes and risk analysis” (P1-0143). The authors would also like to thank Patrik Kušter and Mr. Ivan Kanduč for their help in field and David Kocman and Stojan Žigon for technical support.

Supplementary material

10498_2013_9197_MOESM1_ESM.doc (84 kb)
Supplementary material 1 (DOC 84 kb)

References

  1. Amundson R, Gao Y, Gang P (2003) Soil diversity and land use in the United States. Ecosyst 6:470–482CrossRefGoogle Scholar
  2. Atkins PW (1994) Physical chemistry. Oxford University press, OxfordGoogle Scholar
  3. Aucour AM, Sheppard SMF, Guyomar O, Wattelet J (1999) Use of 13C to trace the origin and cycling of inorganic carbon in the Rhône river system. Chem Geol 159:87–105CrossRefGoogle Scholar
  4. Barth JAC, Veizer J (1999) Carbon cycle in St. Lawrence aquatic ecosystems at Cornwall Ontario/Canada: seasonal and spatial variations. Chem Geol 159:107–128CrossRefGoogle Scholar
  5. Barth JAC, Cronin AA, Dunlop J, Kalin RM (2003) Influence of carbonates on the riverine carbon cycle in an anthropogenically dominated catchment basin: evidence from major elements and stable carbon isotopes in the Lagan River (N. Ireland). Chem Geol 200:203–216CrossRefGoogle Scholar
  6. Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nat Geosci 2:598–600CrossRefGoogle Scholar
  7. Beller HR, Madrid V, Hudson GB, McNab WW, Carlsen T (2004) Biogeochemistry and natural attenuation of nitrate in groundwater at an explosives test facility. Appl Geochem 19:1483–1494CrossRefGoogle Scholar
  8. Ben Othmann D, Luck JM, Tournoud MG (1997) Geochemistry and water dynamics: application to short time-scale flood phenomena in a small Mediterranean catchment. I. Alkalis, alkali-earth and Sr isotopes. Chem Geol 140:9–28CrossRefGoogle Scholar
  9. Berner EK, Berner RA (1996) Global environment, water, air, and geochemical cycles. Prentice Hall, Upper Saddle RiverGoogle Scholar
  10. Broecker WS (1974) Chemical oceanography. Harcourt Brace Jovanovich, New YorkGoogle Scholar
  11. Broecker HC, Peterman J, Siems W (1978) The influence of wind on CO2—exchange in a wind—wave tunnel, including the effects of monolayers. J Mar Res 36:595–610Google Scholar
  12. Burt TP, Trudgill ST (1993) Nitrate in groundwater. In: Burt TP et al (eds) Nitrate: processes, patterns and management. Wiley, ChichesterGoogle Scholar
  13. Buser S (1987) Geological map of Slovenia. In: Encyclopedia of Slovenia no. 8, Mladinska knjiga, Ljubljana (in Slovene)Google Scholar
  14. Camargo JA, Alonso A (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Internat 32:831–849CrossRefGoogle Scholar
  15. Cartwright I (2010) The origins and behavior of carbon in a major semi-arid river, the Murray River, Australia, 2010 as constrained by carbon isotopes and hydrochemistry. Appl Geochem 25:1734–1745CrossRefGoogle Scholar
  16. Chang CCY, Kendall C, Silva SR, Battaglin WA, Campbell DH (2002) Nitrate stable isotopes: tools for determining nitrate sources among different land uses in the Mississippi River Basin. Can J Fish Aquat Sci 59:1874–1885CrossRefGoogle Scholar
  17. Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publishers, New YorkGoogle Scholar
  18. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184CrossRefGoogle Scholar
  19. Devol AH, Hedges JI (2001) Organic matter nutrients in the main stem Amazon River. In: McClaim ME, Victoria RL, Richey JE (eds) The biogeochemistry of the Amazon basin. Oxford University Press, Oxford, pp 275–306Google Scholar
  20. Doctor DH, Kendall C, Sebestyen SD, Shanley JB, Ohte N, Boyer EW (2008) Carbon isotope fractionation of dissolved inorganic carbon (DIC) due to outgassing of carbon dioxide from a headwater stream. Hydrol Process 22:2410–2423CrossRefGoogle Scholar
  21. Drever L, Durand R, Fontes JCh, Vaicher P (1983) Etude pédogénétique et isotopique des néoformations de calcite dans un sol sur craie. Caractéristiques et origins, Geochim Cosmochim Acta 47:2079–2090CrossRefGoogle Scholar
  22. EIONET European Environment Information and Observation Network http://www.eionet-en.arso.gov.si, 2005
  23. Elderfield H, Upstill-Goddard R, Sholkovitz ER (1990) The rare earth elements in rivers, estuaries and coastal seas and their significance to the composition of ocean waters. Geochim Cosmochim Acta 54:971–997CrossRefGoogle Scholar
  24. Freyer HD (1991) Seasonal variation of 15N/14N ratios in atmospheric nitrate species. Tellus 43 B:30–44Google Scholar
  25. Fukada T, Hiscock KM, Dennis PF, Grischek T (2003) A dual isotope approach to identify denitrification in groundwater at a river-bank infiltration site. Water Res 37:3070–3078CrossRefGoogle Scholar
  26. Gaillardet J, Dupre B, Allegre CJ (1991) Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? Geochim Cosmochim Acta 63:4037–4051CrossRefGoogle Scholar
  27. Gaillardet J, Dupre B, Louvat P, Allegre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30CrossRefGoogle Scholar
  28. Gibbs RJ (1972) Water chemistry of the Amazon River. Geochim Cosmochim Acta 36:1061–1066CrossRefGoogle Scholar
  29. Gieskes JM (1974) The alkalinity-total carbon dioxide system in seawater. In: Goldberg ED (ed) Marine chemistry of the sea, vol 5. Wiley, New York, pp 123–151Google Scholar
  30. Hagedorn B, Cartwright I (2010) The CO2 system in rivers of the Australian Victorian Alps: CO2 evasion in relation to system metabolism and rock weathering on multi-annual time scales. Appl Geochem 25:881–899CrossRefGoogle Scholar
  31. Harrington RR, KennedyBP, Chamberlain CP, Blum JD, Flot CL (1998) 15N enrichment in agricultural catchments: field patterns and applications to tracking Atlantic salmon (Salmo salar). Chem Geol 147:281–294Google Scholar
  32. Heaton THE (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review. Chem Geol Isotope Geosci Sect 59:87–102CrossRefGoogle Scholar
  33. Hebert CG, Wassenaar LI (2001) Stable nitrogen isotopes in waterfowl feathers reflects agricultural land use in western Canada. Environ Sci Technol 35:3482–3487CrossRefGoogle Scholar
  34. Hedges JI (1992) Global biogeochemical cycle: progress and problem. Mar Chem 39(67–93):1992Google Scholar
  35. Hélie JF, Hillare-Marcel C, Rondeau B (2002) Seasonal changes in the sources and fluxes of dissolved inorganic carbon through the St. Lawrence River-isotopic and chemical constraint. Chem Geol 186:117–138CrossRefGoogle Scholar
  36. Holley EH (1997) Oxygen transfer at the air–water interface. In: Gibbs RJ (ed) Transport processes in lakes and oceans, proceedings of the symposium on transport processes in the Ocean held at the 82nd national meeting of the AICE, Atlantic City, N. J. Aug. 29.–Sep. 1, 1976. Plenum Press, New York, pp 117–150Google Scholar
  37. Hrvatin M (1998) Discharge regimes in Slovenia. Geografski zbornik XXXVIII:60–87Google Scholar
  38. Hu MH, Stallard RF, Edmond JM (1982) Major ion chemistry of some large Chinese rivers. Nature 298:550–553CrossRefGoogle Scholar
  39. Huh Y, Tsoi MY, Zaitsev A, Edmond JM (1998) The fluvial geochemistry of the rivers of Eastern Siberia: I. Tributaries of the Lena River draining the sedimentary platform of the Siberian Craton. Geochim Cosmochim Acta 62:1657–1676CrossRefGoogle Scholar
  40. Ittekkot V (1988) Global trends in the nature of organic matter in the river suspensions. Nature 332:436–438CrossRefGoogle Scholar
  41. Jähne B, Heinz G, Dietrich W (1987) Measurements of the Diffusion Coefficients of sparingly soluble gases in water. J Geophys Res 92:10767–10776CrossRefGoogle Scholar
  42. Jamnik B, Refsgaard A, Janža M, Kristensen M (2001) Water resources management model for Ljubljana City. In: Brancelj IR, Smrekar A, Kladnik D (eds) Podtalnica Ljubljanskega polja. Geografija Slovenije 10:251 (in Slovene)Google Scholar
  43. Janža M, Prestor J (2002) Karta ranljivosti s parametri, Preverba in dopolnitev strokovnih podlag za določitev varstvenih pasov vodnih virov centralnega sistema oskrbe s pitno vodo v MOL-Ljubljansko polje. Ljubljana (in Slovene)Google Scholar
  44. Jogan N, Kotarac M, Lešnik A (eds) (2004) Identification of sites containing non-forest natural habitat types of Community importance by using ranges of characteristic plant species. Centre for Cartography of Fauna and Flora, Miklavž na Dravskem polju, 961 pp (in Slovene). Available online: http://www.natura2000.gov.si/projektivec/pregled_nalog.htm
  45. Kanduč T (2006) Hydrogeochemical characteristics and carbon cycling in the Sava River watershed in Slovenia. University of Ljubljana, DissertationGoogle Scholar
  46. Kanduč T, Szramek K, Ogrinc N, Walter LM (2007) Origin and cycling of riverine inorganic carbon in the Sava River watershed (Slovenia) inferred from major solutes and stable carbon isotopes. Biogeochem 86:137–154CrossRefGoogle Scholar
  47. Kanduč T, Kocman D, Ogrinc N (2008) Hydrogeochemical and stable isotope characteristics of the river Idrijca (Slovenia), the boundary watershed between the Adriatic and Black seas. Aquat Geochem 14:239–262CrossRefGoogle Scholar
  48. Kanduč T, Mori N, Kocman D, Stibilj V, Grassa F (2012) Hydrogeochemistry of alpine springs from North Slovenia: insights from stable isotopes. Chem Geol 300–301:40–45CrossRefGoogle Scholar
  49. Karim A, Veizer J (2000) Weathering processes in the Indus River Basin: implications from riverine carbon, sulfur, oxygen and strontium isotopes. Chem Geol 170:153–177CrossRefGoogle Scholar
  50. Kellman LM, Hillaire-Marcel C (2003) Nitrate cycling in streams: using natural abundance of NO3 15N to measure in situ denitrification. Biogeochemistry 43:303–321Google Scholar
  51. Kempe S, Pettine M, Cauwet G (1991) Biogeochemistry of European rivers. In: Kempe S, Degens ET, Richey JE (eds) Biogeochemistry of major world rivers. Wiley, New York, SCOPE/UNEP 42, pp 169–211Google Scholar
  52. Kendall C (1998) Tracing nitrogen sources and cycling in catchments. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 519–576CrossRefGoogle Scholar
  53. Levin I, Kromer B, Wagenback D, Minnich KO (1987) Carbon isotope measurements of atmospheric CO2 at a coastal station in Antarctica. Tellus 39 B:89–95Google Scholar
  54. Liu Z, Zhao J (2000) Contribution of carbonate rock weathering to the atmospheric CO2 sink. Environ Geol 39:1053–1058CrossRefGoogle Scholar
  55. Livingstone DA (1963) Chemical composition of rivers and lakes. U. S. Geol. Survey Prof Paper, p 44-GGoogle Scholar
  56. Marinček M, Čarni A (2002) Commentary to the vegetation map of forest communities of Slovenia in scale of 1:400,000, Založba ZRC, Biološki inštitut Jovana Hadžija ZRC SAZUGoogle Scholar
  57. Mayer B, Boyer EW, Goodale C, Jaworski NA, van Breemen N, Howarth RW, Seitzinger S, Billen G, Lajtha K, Nadelhoffer K, Van Dam D, Hetling LJ, Nosal M, Paustian K (2002) Sources of nitrate in rivers draining sixteen watersheds in the northeastern U.S.: Isotopic constraints. Biogeochemistry 57/58:171–192Google Scholar
  58. Mayorga E, Aufdenkampe AK, Masiello CA, Krusche AV, Hedges JI, Quay PD, Richey JE, Brown TA (2005) Young organic matter as a source of carbon dioxide outgassing from Amazon rivers. Nature 436:538–541CrossRefGoogle Scholar
  59. Meybeck M. (1981) River transport of organic carbon to the ocean. In: Likens GE, Mackenzie FT, Richey JE, Sedell JR, Turekian KK (eds) Flux of organic carbon to the oceans, pp 219–269, U. S. D.O.E. CONF-8009140, Nat. Tech. Ing. Serr., SpringfieldGoogle Scholar
  60. Meybeck M (1982) Carbon, nitrogen and phosphorus transport by world rivers. Am J Sci 282:401–450CrossRefGoogle Scholar
  61. Meybeck M (1993) Natural sources of C, N, P and S. NATO ASI series, vol. 14. Interactions of C, N, P and S, biogeochemical cycles and global change. Springer, Berlin, pp 163–193Google Scholar
  62. Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Eath Planet Sci Lett 22:169–176CrossRefGoogle Scholar
  63. National Research Council (2000) Clean coastal waters: understanding and reducing the effects of nutrient pollution. National Academic Press, WashingtonGoogle Scholar
  64. Négrel P, Lachassagne P (2000) Geochemistry of the Maroni River (French Guiana) during the low water stage: implications for water-rock interactions and groundwater characteristics. J Hydrol 237:212–233CrossRefGoogle Scholar
  65. Ogrinc N, Markovics R, Kanduč T, Walter LM, Hamilton SK (2008) Sources and transport of carbon and nitrogen in the River Sava watershed, a major tributary of the river Danube. Appl Geochem 23:3685–3698CrossRefGoogle Scholar
  66. Palmer SM, Hope D, Billett MF, Dawson JJ, Bryant CL (2001) Sources of organic and inorganic carbon in a headwater stream: evidence from carbon isotope studies. Biogeochemistry 52:321–338CrossRefGoogle Scholar
  67. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigations Report 99-4259Google Scholar
  68. Pawellek F, Frauenstein F, Veizer J (2002) Hydrogeochemistry and isotope geochemistry of the upper Danube River. Geochim Cosmochim Acta 66:3839–3854CrossRefGoogle Scholar
  69. Pearl HW, Dennis RL, Whitall DR (2002) Atmospheric deposition of nitrogen: implications for nutrient over-enrichment of coastal waters. Estuaries 25:677–693CrossRefGoogle Scholar
  70. Petelet E, Luck JM, Ben Othmna D, Négrel Ph, Aquilina L (1998) Geochemistry and water dynamics on a medium sized watershed: the Herault, S France. Chem Geol 150:63–83CrossRefGoogle Scholar
  71. Radinja D, Grbović J, Povž M, Zupan M, Skoberne P (1987) Javornik M (ed) Kamniška Bistrica: in Encyclopedia Slovenia 4. Mladinska knjiga, Ljubljana, pp 382 (in Slovene)Google Scholar
  72. Raymond PA, Zappa CJ, Butman D, Bott TL, Potter J, Mulholland P, Lauersen AE, McDowell WH, Newbold D (2012) Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol Oceanogr Fluids Environ 2:41–53. doi: 10.1215/21573689-1597669 Google Scholar
  73. Reeder SW, Hitchon B, Levinson AA (1972) Hydrogeochemistry of the surface waters of the Mackenzie River drainage basin, Canada: 1. Factors controlling inorganic composition. Geochim Cosmochim Acta 36:181–192CrossRefGoogle Scholar
  74. Schulte P, Van Geldern R, Freitag H, Karim A, Négrel P, Petelet-Giraud E, Probst A, Telmer K, Veizer J, Barth JAC (2011) Applications of stable water and carbon isotopes in watershed research: weathering, carbon cycling, and water balances. Earth-Sci Rev 109:20–31Google Scholar
  75. Schuster PF, Reddy MM (2001) Particulate Carbon (PC) and Particulate Nitrogen (PN). In: Water and sediment quality in the Yukon River Basin, Alaska, during water year 2001. Open-file report 03-427, National Research Program, USGS, available online: http://pubs.usgs.gov/of/2003/ofr03427/
  76. Sempere R, Charriere B, Wambeke FV, Cauwe G (2000) Carbon inputs of the Rhone River to the Mediterranean Sea: biogeochemical implications. Global Biogeochem Cycles 14:669–681CrossRefGoogle Scholar
  77. Silva SR, Kendall C, Wilkison DH, Ziegler AC, Chang CC, Avanzino RJ (2000) A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios. J Hydrol 228:22–36CrossRefGoogle Scholar
  78. Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro) aggregates, soil biota, and soil organic dynamics. Soil Tillage Res 79:7–31CrossRefGoogle Scholar
  79. Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems: a global problem. Environ Sci Pollut Res 10:126–139CrossRefGoogle Scholar
  80. Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn. Wiley, New YorkGoogle Scholar
  81. Šturm M, Lojen S (2011) Nitrogen isotopic signature of vegetables from the Slovenian market and its suitability as an indicator of organic production. Isot Environ Health Stud 47:214–220CrossRefGoogle Scholar
  82. Summerfield MA (ed) (1991) Global geomorphology. an introduction to the study of landforms. Longman Scientific & Technical, New York, p 537Google Scholar
  83. Szramek K, McIntoch JC, Williams EL, Kanduč T, Ogrinc N, Walter LM (2007) Relative weathering intensity of calcite versus dolomite in carbonate-bearing temperature zone watersheds: carbonate geochemistry and fluxes from catchments within the St. Lawrence and Danube river basin. Geochem Geophys Geosys 8:1–26CrossRefGoogle Scholar
  84. Telmer K, Veizer J (1999) Carbon fluxes, pCO2 and substrate weathering in a large northern river basin, Canada: carbon isotope perspectives. Chem Geol 159:61–86CrossRefGoogle Scholar
  85. Ter Braak CJF, Šmilauer P (2002) CANOCO, version 4.5Google Scholar
  86. Urbanc J, Cerar S, Stražar A (2012) Hydrochemical characteristics of groundwater from the Kamniškobistriško field aquifer. RMZ Mater Geoenviron 59(2/3):213–228Google Scholar
  87. Vižintin G, Souvent P, Veselič M, Čenčur Curk B (2009) Determination of urban groundwater pollution in alluvial aquifer using linked process models considering urban water cycle. J Hydrol 377:261–273CrossRefGoogle Scholar
  88. Voss M, Deutsch B, Elmgren R, Humborg C, Kuuppo P, Patuszak M, Rolff C, Schulte U (2006) Source identification of nitrate by means of isotopic tracers in the Baltic Sea catchments. Biogeosciences 3:663–676CrossRefGoogle Scholar
  89. Wachniew P (2006) Isotopic composition of dissolved inorganic carbon in a large polluted river: the Vistula, Poland. Chem Geol 233:293–308CrossRefGoogle Scholar
  90. Wetzel RG (2001) Limnology, 3rd edn. Academic Press, New YorkGoogle Scholar
  91. Wu Y, Zhang J, Liu SM, Zhang ZF, Yao QZ, Hong GH, Cooper L (2007) Sources and distribution of carbon within the Yangtze River system. Estuar Coast Shelf Sci 71:13–25CrossRefGoogle Scholar
  92. Yang C, Telmer K, Veizer J (1996) Chemical dynamics of the ‘St. Lawrance’ riverine system: δDH2O, δ18OH2O, δ13CDIC, δ34Ssulfate, and dissolved 87Sr/86Sr. Geochim Cosmochim Acta 60:851–866CrossRefGoogle Scholar
  93. Zhang J, Quay PD, Wilbur DO (1995) Carbon isotope fractionation during gas–water exchange and dissolution of CO2. Geochim Cosmochim Acta 59:107–1146CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Tjaša Kanduč
    • 1
  • Martina Burnik Šturm
    • 2
  • Jennifer McIntosh
    • 3
  1. 1.Department of Environmental SciencesJožef Stefan InstituteLjubljanaSlovenia
  2. 2.Research Institute of Wildlife EcologyUniversity of Veterinary MedicineViennaAustria
  3. 3.Department of Hydrology and Water ResourcesUniversity of ArizonaTucsonUSA

Personalised recommendations