Aquatic Geochemistry

, Volume 19, Issue 2, pp 147–171 | Cite as

Contribution of \( {\text{P}}_{{{\text{CO}}_{ 2} {\text{eq}}}} \) and 13CTDIC Evaluation to the Identification of CO2 Sources in Volcanic Groundwater Systems: Influence of Hydrometeorological Conditions and Lava Flow Morphologies—Application to the Argnat Basin (Chaîne des Puys, Massif Central, France)

  • Guillaume Bertrand
  • Hélène Celle-Jeanton
  • Sébastien Loock
  • Frédéric Huneau
  • Véronique Lavastre
Original Paper

Abstract

Mineralization of groundwater in volcanic aquifers is partly acquired through silicates weathering. This alteration depends on the dissolution of atmospheric, biogenic, or mantellic gaseous CO2 whose contributions may depend on substratum geology, surface features, and lava flow hydrological functionings. Investigations of \( {\text{P}}_{{{\text{CO}}_{ 2} {\text{eq}}}} \) and δ13CTDIC (total dissolved inorganic carbon) on various spatiotemporal scales in the unsaturated and saturated zones of volcanic flows of the Argnat basin (French Massif Central) have been carried out to identify the carbon sources in the system. Mantellic sources are related to faults promoting CO2 uplift from the mantle to the saturated zone. The contribution of this source is counterbalanced by infiltration of water through the unsaturated zone, accompanied by dissolution of soil CO2 or even atmospheric CO2 during cold periods. Monitoring and modeling of δ13CTDIC in the unsaturated zone shows that both \( {\text{P}}_{{{\text{CO}}_{ 2} {\text{eq}}}} \) and δ13CTDIC are controlled by air temperature which influences soil respiration and soil-atmosphere CO2 exchanges. The internal geometry of volcanic lava flows controls water patterns from the unsaturated zone to saturated zone and thus may explain δ13C heterogeneity in the saturated zone at the basin scale.

Keywords

Volcano Unsaturated zone Groundwater \( {\text{P}}_{{{\text{CO}}_{ 2} }} \) Carbon-13 

References

  1. Abril G, Etxheber H, Borges AV, Frankignoulle M (2000) Excess atmospheric carbon dioxide transported by rivers into the Scheldt estuary. C R Acad Sci Paris, Sciences de la Terre et des planètes/Earth Planet Sci 330:761–768Google Scholar
  2. Alley WM (1993) Regional ground-water quality. Van Nostrand Reinhold, New York, p 634Google Scholar
  3. Amiotte-Suchet P, Probst JL (1993) Modelling of atmospheric CO2 consumption by chemical weathering of rocks: application to the Garonne, Congo and Amazon basins. Chem Geol 107:205–210CrossRefGoogle Scholar
  4. Amiotte-Suchet P, Probst JL (1995) A global model for present day atmospheric/soil CO2 consumption by chemical erosion of continental rocks (GEM-CO2). Tellus 47B:273–280Google Scholar
  5. Amiotte-Suchet P, Aubert D, Probst JL, Gauthier-Lafaye F, Probst A, Andreux F, Viville D (1999) δ13C pattern of dissolved inorganic carbon in a small granitic catchment : the Strengbach case study Vosges mountains, France. Chem Geol 159:129–145CrossRefGoogle Scholar
  6. Amiotte-Suchet P, Probst JL, Ludwig W (2003) Worldwide distribution of continental rock lithology: implications for atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Global Biogeochem. Cycles 17 doi:10.1029/2002GB001891 (electronic version)
  7. Amundson R, Stern L, Baisden T, Wang Y (1998) The isotopic composition of soil and soil-respired CO2. Geoderma 82:83–114CrossRefGoogle Scholar
  8. Appelo CAJ, Postma D (1994) Geochemistry, groundwater and pollution. Balkema AA (ed), Rotterdam, p 536Google Scholar
  9. Aubignat A (1973) Le gisement hydrominéral de Volvic en Auvergne [The hydromineral source of Volvic in Auvergne]. Rev Sci Nat Auvergne 39:40–68Google Scholar
  10. Barbaud JY (1983) Etude chimique et isotopique des aquifères du Nord de la Chaîne des Puys. Temps de transit et vulnérabilité des systèmes de Volvic et d’Argnat. PhD thesis, Université d’Avignon, p 209Google Scholar
  11. Batard F, Baudron JC, Bosh B, Marce A, Risler JJ (1982) Isotopic identification of gases of a deep origin in French thermomineral waters. J Hydrol 56:1–21CrossRefGoogle Scholar
  12. Batiot C (2002) Etude expérimentale du cycle du carbone en regions karstiques. Apport du carbone organique et du carbone minéral à la connaissance hydrogéologique des systèmes. Site expérimental de Vaucluse, Jura, Larzac, région nord-montpelliéraine, Nerja (Espagne) [Experimental study of the carbon cycle in karstic areas. Contribution of organic and mineral carbons for the hydrogeological understanding of the systems. Experimental sites of Vaucluse, Jura, Larzac, Montpellier’s north area, Nerja (Spain)], PhD thesis, Université d’Avignon et des Pays de Vaucluse, p 247Google Scholar
  13. Baynes J, Dearman WR (1978) The microfabric of a chemically weathered granite. Bull Eng Geol Environ 18:91–100. doi:10.1007/BF02635354 Google Scholar
  14. Belin JM, Livet M, Heraud H (1988) Autoroute Périgueux Clermont-Ferrand. Dossier d’étude préliminaire de la Chaîne des Puys [Périgueux Clermont-Ferrand Motorway. Preliminary study of the Chaîne des Puys], Ministère de l’équipement et du Logement, CETE Lyon, laboratoire régional de Clermont-FerrandGoogle Scholar
  15. Benedetti MF, Menard O, Noack Y, Carvalho A, Nahon D (1994) Water-rock interactions in tropical catchments: field rates of weathering and biomass impact. Chem Geol 118:203–220CrossRefGoogle Scholar
  16. Berthelin J (1988) Microbial weathering processes in natural environments. In: Lerman A, Meybeck M (eds) Physical and chemical weathering in geochemical cycles. Kluwer, DordrechtGoogle Scholar
  17. Bertrand G (2009) De la pluie à l’eau souterraine. Apport du traçage naturel (ions majeurs, isotopes) à l’étude du fonctionnement des aquifères volcaniques. (Bassin d’Argnat, Auvergne, France) [From rain to groundwater. Contribution of natural tracers (major ions, isotopes) for the study of volcanic aquifer functiuning (Argnat basin, Auvergne, France)]. PhD thesis, University Blaise Pascal Clermont-Ferrand 2, 294 p. Available on: http://tel.archives-ouvertes.fr/docs/00/55/69/10/PDF/25042009_these_GBERTRAND.pdf. Accessed the 05-02-2012
  18. Bertrand G, Celle-Jeanton H, Huneau F, Loock S, Rénac C (2010) Identification of different groundwater flowpaths within volcanic aquifers using natural tracers: influence of lava flows morphology. (Argnat basin, Chaîne des Puys, France). J Hydrol 391:223–234CrossRefGoogle Scholar
  19. Bertrand G, Goldscheider N, Gobat JM, Hunkeler D (2012a) Review: from multi-scale conceptualization of groundwater-dependent ecosystems to a classification system for management purposes. Hydrogeol J 20:5–25CrossRefGoogle Scholar
  20. Bertrand G, Masini J, Goldscheider N, Meeks J, Lavastre V, Celle-Jeanton H, Gobat JM, Hunkeler D (2012b) Determination of spatio-temporal variability of tree water uptake using stable isotopes (δ18O; δ2H) in an alluvial system supplied by a high-altitude watershed, Pfyn Forest, Switzerland. Ecohydrology, online. doi:10.1002/eco.1347
  21. Bleak AT (1970) Disappearance of plant material under a winter snow cover. Ecology 51:915–917CrossRefGoogle Scholar
  22. Bluth GJS, Kump LR (1994) Lithologic and climatic control of river chemistry. Geochim Cosmochim Acta 58:2341–2359CrossRefGoogle Scholar
  23. Boivin P, Besson JC, Briot D, Camus G, De Goër De Herve A, Gourgaud A, Labazuy P, De Larouzière FD, Livet M, Mergoil J, Miallier D, Morel JM, Vernet G, Vincent PM (2009) Volcanologie de la Chaîne des Puys, Massif Central Français [Volcanology of the Chaîne des Puys], 5th édn, Editions du parc naturel régional des volcans d’AuvergneGoogle Scholar
  24. Bottinga Y (1968) Calculation of fractionation factors for carbon and oxygen isotopic exchange in the system calcite-carbon dioxide-water. J Phys Chem 72:800–818CrossRefGoogle Scholar
  25. Brady PV, Dorn RI, Brazel AJ, Clark J, Moore RB, Glidewell T (1999) Direct measurement of the combined effects of lichen, rainfall and temperature on silicate weathering. Geochim Cosmochim Acta 63:3293–3300CrossRefGoogle Scholar
  26. Bréhérét JG, Fourmont A, Macaire JJ, Negrel P (2008) Microbially mediated carbonates in the Holocene deposits from Sarliève, a small ancient lake of the French Massif Central, testify to the evolution of a restricted environment. Sedimentology 55:557–578CrossRefGoogle Scholar
  27. Camus G, Michard GPO, Boivin P (1993) Risque d’éruption gazeuse carbonique en Auvergne [Gaseous carbon eruption risk in Auvergne]. Bull Soc Géol France 164(6):767–781Google Scholar
  28. Carrillo-Rivera JJ, Varsányi I, Kovács L, Cardona A (2007) Tracing groundwater flow systems with hydrogeochemistry in contrasting geological environments. Water Air Soil Pollut 184:77–103CrossRefGoogle Scholar
  29. Cerling TE, Solomon DK, Quade J, Borman JR (1991) On the isotopic composition of carbon in soil carbon dioxide. Geochim Cosmochim Acta 55:3403–3405CrossRefGoogle Scholar
  30. Charlier JB, Lachassagne P, Ladouche B, Cattan P, Moussa R, Voltz M (2011) Structure and hydrogeological functioning of an insular tropical humid andesitic volcanic watershed: a multi-disciplinary experimental approach. J Hydrol 398:155–170CrossRefGoogle Scholar
  31. Chiodini G, Frondini F, Kerrick DM, Rogie J, Parello F, Peruzzi L, Zanzari AR (1999) Quantification of deep CO fluxes from Central Italy. Examples of carbon balance for regional aquifers and of soil diffuse degassing. Chem Geol 159:205–222CrossRefGoogle Scholar
  32. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, New York, p 328Google Scholar
  33. Coxon DS, Parkinson D (1987) Winter respiratory activity in aspen woodland forest floor litter and soils. Soil Biol Biochem 19:49–59CrossRefGoogle Scholar
  34. Cruz JV, Amaral CS (2004) Major ion chemistry of groundwater from perched-water bodies of the Azores (Portugal) volcanic archipelago. Appl Geochem 19:445–459CrossRefGoogle Scholar
  35. Cruz JV, Franca Z (2006) Hydrogeochemistry of thermal and mineral water springs of the Azores archipelago (Portugal). J Volcanol Geoth Res 151:382–398CrossRefGoogle Scholar
  36. Dafny E, Burg A, Gvirtzman H (2006) Deduction of groundwater flow regime in a basaltic aquifer using geochemical and isotopic data: the Golan Heights, Israel case study. J Hydrol 330:506–524CrossRefGoogle Scholar
  37. Deines P (1980) The isotopic composition of reduced organic carbon. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry, vol 1. Elsevier, New York, pp 329–406Google Scholar
  38. Deines P, Langmuir D, Harmon RS (1974) Stable isotope ratios and the existence of a gas phase in the evolution of carbonate groundwaters. Geochim Cosmochim Acta 38:1147–1154CrossRefGoogle Scholar
  39. Demlie M, Wohnlich S, Ayenew T (2008) Major ion hydrochemistry and environmental isotope signatures as a tool in assessing groundwater occurrence and its dynamics in a fractured volcanic aquifer system located within a heavily urbanized catchment, central Ethiopia. J Hydrol 353:175–188CrossRefGoogle Scholar
  40. Dessert C, Dupré B, Francois LM, Schott J, Gaillardet J, Chakrapani GJ, Bajpai S (2001) Erosion of Deccan Traps determined by river geochemistry: impact on the global climate and the 87Sr/86Sr ratio of seawater. Earth Planet Sci Lett 188:459–474CrossRefGoogle Scholar
  41. Dessert C, Dupré B, Gaillardet J, Francois LM, Allegre CJ (2003) Basalt weathering laws and impact of basalt weathering on the global carbon cycle. Chem Geol 202:257–273CrossRefGoogle Scholar
  42. Dever ML(1985) Approaches chimiques et isotopiques des interactions fluide-matrice en zone non saturée carbonatée [Chemical and isotopic approaches of fluid-matrix interaction in carbonate saturated zone]. PhD thesis, Université Paris XI, p 196Google Scholar
  43. D’Ozouville N, Auken E, Sorensen K, Violette S, De Marsily G, Deffontaines B, Merlen G (2008) Extensive perched aquifer and structural implications revealed by 3D resistivity mapping in a Galapagos volcano. Earth Planet Sci Lett 269:518–522CrossRefGoogle Scholar
  44. Drever JI (1994) The effect of land plants on weathering rates of silicate minerals. Geochim Cosmochim Acta 58:2325–2332CrossRefGoogle Scholar
  45. Druraiswami RA, Bondre NR, Managrave S (2008) Morphology of rubbly pahoehoe (simple) flows from the Deccan Volcanic Province: implications for style of emplacement. J Volcanol Geoth Res 177:822–836CrossRefGoogle Scholar
  46. Dudziak A, Halas S (1996) Influence of freezing and thawing on the carbon isotope composition in soil CO2. Geoderma 69:209–216CrossRefGoogle Scholar
  47. Edmond JM, Palmer MR, Measures CI, Grant B, Stallard RF (1995) The fluvial geochemistry and denudation rate of the Guyana Shield in Venezuela, Colombia, and Brazil. Geochim Cosmochim Acta 59:3301–3325CrossRefGoogle Scholar
  48. Emblanch C (1997) Les équilibres chimiques et isotopiques du carbone dans les aquifères karstiques: étude en région méditerranéenne de montagne [Chemical and isotopic equilibria of carbon in karstic aquifer: study in mountainous Mediterranean area] PhD thesis, Université d’Avignon et des Pays du Vaucluse, p 184Google Scholar
  49. Emblanch C, Zuppi GM, Mudry J, Blavoux B, Batiot C (2003) Carbon 13 of TDIC to quantify the role of the unsaturated zone: the example of the Vaucluse karst systems (Southeastern France). J Hydrol 279(1–4):262–274CrossRefGoogle Scholar
  50. European Union Groundwater Directive (2006/118/EC), 2006 Available on: http://ec.europa.eu/environment/water/water-framework/groundwater/policy/current_framework/new_directive_en.htm. Accessed the 05-02-2012
  51. Federico C, Aiuppa A, Allard P, Bellomo S, Jean-Baptiste P, Parello F, Valenza M (2002) Magma-derived gas influx and water-rock interactions in the volcanic aquifer of Mt Vesuvius, Italy. Geochim Cosmochim Acta 66:963–981CrossRefGoogle Scholar
  52. Freeze AR, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ, USA, p 604Google Scholar
  53. Gaillardet J, Dupré B, Louvat P, Allègre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of the large rivers. Chem Geol 159:3–30CrossRefGoogle Scholar
  54. Gal F, Gadalia A (2011) Soil gas measurements around the most recent volcanic system of metropolitan France (Lake Pavin, Massif Central). C R Geosci 343:43–54CrossRefGoogle Scholar
  55. Garrels RM, Mackenzie F (1971) Evolution of Sedimentary Rocks. Norton, New YorkGoogle Scholar
  56. Gislason SR, Arnorsson S, Armannsson H (1996) Chemical weathering of basalt as deduced from the composition of precipitation, rivers and rocks in SW Iceland: effect of runoff, age of rocks and vegetative/glacial cover. Am J Sci 296:837–907CrossRefGoogle Scholar
  57. Hinsinger P, Barros ON, Benedetti MF, Noack Y, Callot G (2001) Plant-induced weathering of a basaltic rocks: experimental evidence. Geochim Cosmochim Acta 65:137–152CrossRefGoogle Scholar
  58. Hori M, Hoshino K, Okumura K, Kano A (2008) Seasonal patterns of carbon chemistry and isotopes in tufa depositing groundwaters of southwestern Japan. Geochim Cosmochim Acta 72:480–492CrossRefGoogle Scholar
  59. Hottin AM, Camus G, Michaeli B, Marchand J, Perichaud J, D’Arcy D (1989) Notice explicative, carte geol. France (1/50000), feuille Pontgibaud (692) [Explicative notice, geological map France (1/50000), sheet of Pontgibaud (692)] Orléans, BRGM, p 103Google Scholar
  60. Jiráková H, Huneau F, Hrkal Z, Celle-Jeanton H, Le Coustumer P (2010) Carbone isotopes to constrain the origin and circulation pattern of groundwater in the north-western part of the Bohemian Cretaceous Basin (Czech Republic). Appl Geochem 25:1265–1279CrossRefGoogle Scholar
  61. Josnin JY, Livet M, Besson JC (2007) Characterizing unsaturated flow from packed scoriated lapilli: application to Strombolian cone hydrodynamic behaviour. J Hydrol 335:225–239CrossRefGoogle Scholar
  62. Joux M (2002) Structure et fonctionnement hydrogéologique du système aquifère volcanique des eaux minérales de Volvic (Chaîne des Puys, Massif Central Français) [Structure and hydrogeological functiuning of mineral waters of Volvic (Chaîne des Puys, French Massif Central)] PhD thesis, Université d’Avignon et des Pays du Vaucluse, p 227Google Scholar
  63. Karakaya N, Karakaya MC, Nalbantçılar MT, Yavuz F (2007) Relation between spring-water chemistry and hydrothermal alteration in the Şaplıca volcanic rocks, Şebinkarahisar (Giresun, Turkey). J Geochem Explor 93:35–46CrossRefGoogle Scholar
  64. Karberg NJ, Pregitzer ÆKS, King ÆJS, Friend AL, Wood ÆJR (2005) Soil carbon dioxide partial pressure and dissolved inorganic carbonate chemistry under elevated carbon dioxide and ozone. Oecologia 142:296–306CrossRefGoogle Scholar
  65. Kiernan K, Wood C, Middleton G (2003) Aquifer structure and contamination risk in lava flows: insights from Iceland and Australia. Environ Geol 43:852–865Google Scholar
  66. Kløve B, Ala-aho P, Allan A, Bertrand G, Druzynska E, Ertürk A, Goldscheider N, Henry S, Karakaya N, Karjalainen TP, Koundouri P, Kværner J, Lundberg A, Muotka T, Preda E, Pulido Velázquez M, Schipper P (2011) Groundwater Dependent Ecosystems: part II—ecosystem services and management under risk of climate Change and Land-Use Management. Environ Sci Policy 14:782–793CrossRefGoogle Scholar
  67. Korzhinskii DS (1959) Physicochemical basis of the analysis of the paragenesis of minerals (translation). Consultant Bureau, New York, p 143Google Scholar
  68. Kroopnick PM, Deuser WG, Graig H (1970) Carbon-13 measurements on dissolved inorganic carbon in the North Pacific _1969. GEOSECS station. J Geophys Res 75:7668–7671CrossRefGoogle Scholar
  69. Kulkarni H, Deolankar SB, Lalwani A (2000) Hydrogeological framework of the Deccan basalt groundwater systems, west-central India. Hydrogeol J 8:368–378CrossRefGoogle Scholar
  70. Lavina P, Del Rosso d’Hers T (2008) Le complexe volcanique Montchal-Pavin-Montcynère: nouvelles stratigraphie, tephrochronologie et datations, vers une nouvelle réévaluation de l’aléa volcano-tectonique en Auvergne [The volcanic complex of montchal-Pacin-Montcynère: new stratigraphy, tephrochronology and datations, toward a new evaluation of the volcano-tectonic alea in Auvergne]. XXIIème Réunion des Sciences de la Terre, Nancy, April 2008Google Scholar
  71. Levin I, Graul R, Trivett NBA (1995) Long-term observations of atmospheric CO2 and carbon isotopes at continental sites in Germany. Tellus 47B:23–34Google Scholar
  72. Liu Z, Li Q, Sun H, Wang J (2007) Seasonal, diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China:soil CO2 and dilution effects. J Hydrol 337:207–223CrossRefGoogle Scholar
  73. Livet M, D’Arcy A, Dupuy C (2006) Synthèse hydrogéologique de l’Auvergne [Hydrogeological synthesis of Auvergne]. In ‘‘Aquifères et eaux souterraines en France’’[Aquifers and groundwaters in France], Ed. BRGM, p 956Google Scholar
  74. Lloret E, Dessert C, Gaillardet J, Albéric P, Crispi O, Chaduteau C, Benedetti MF (2011) Comparison of dissolved inorganic and organic carbon yields and fluxes in the watersheds of tropical volcanic islands, examples from Guadeloupe (French West Indies). Chem Geol 280:65–78CrossRefGoogle Scholar
  75. Lohila A, Aurela M, Regina K, Tuovinen JP, Laurila T (2007) Wintertime CO2 exchange in a boreal agricultural peat soil. Tellus 59B:860–873Google Scholar
  76. Louvat P, Allègre CJ (1997) Present denudation rates at Réunion island determined by river geochemistry: basalt weathering and mass budget between chemical and mechanical erosions. Geochim Cosmochim Acta 61:3645–3669CrossRefGoogle Scholar
  77. MacDonald GA (1953) Pahoehoe, a’a and block lava. Am J Sci 251:169–191CrossRefGoogle Scholar
  78. Martin-Del Pozzo A, Aceves F, Espinasa R, Aguayo A, Inguaggiato S, Morales P, Cienfuegos E (2002) Influence of volcanic activity on spring water chemistry at Popocatepetl volcano, Mexico. Chem Geol 190:207–229CrossRefGoogle Scholar
  79. Matsuoka J, Kano A, Oba T, Watanabe T, Sakai S, Seto K (2001) Seasonal variation of stable isotopic compositions recorded in a laminated tufa, SW Japan. Earth Planet Sci Lett 192:31–44CrossRefGoogle Scholar
  80. Matter JM, Takahashi T, Goldberg D (2007) Experimental evaluation of in situ CO2-water-rock reactions during CO2 injection in basaltic rocks: implications for geological CO2 sequestration. Geochem Geophys Geosyst 8:Q02001. doi:10.1029/2006GC001427 CrossRefGoogle Scholar
  81. Meunier A, Sardini P, Robinet JC, Prêt D (2007) The petrography of weathering processes: facts and outlooks. Clay Miner 42:415–435CrossRefGoogle Scholar
  82. Meybeck M (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287:401–428CrossRefGoogle Scholar
  83. Millot R, Gaillardet J, Dupré B, Allègre CJ (2002) The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield. Earth Planet Sci Lett 196:83–98CrossRefGoogle Scholar
  84. Mook WG, Groenweld DJ, Brouwn AE, van Ganwijk AJ (1974) Analysis of a run-off hydrograph by means of natural 18O. Conference Proceedings Isotope Techniques in Ground-Water Hydrology, IAEA, Vienna, pp 145–155Google Scholar
  85. Moulton KL, West J, Berner RA (2000) Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering. Am J Sci 300:539–570CrossRefGoogle Scholar
  86. National Oceanic and Atmospheric Administration (NOAA) (2011): Mauna Loa Annual Mean CO2. Available on ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_annmean_mlo.txt. Accessed the 05-02-2012
  87. Négrel P, Allègre CJ, Dupré B, Lewin E (1993) Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river water: the Congo Basin case. Earth Planet Sci Lett 120:59–76CrossRefGoogle Scholar
  88. Nesbitt HW, Wilson RE (1992) Recent chemical weathering of basalts. Am J Sci 292:740–777CrossRefGoogle Scholar
  89. Pacheco FAL, Van der Weijden CH (2012) Weathering of plagioclase across variable flow and solute transport regimes. J Hydrol 420–421:46–58CrossRefGoogle Scholar
  90. Pokrovsky OS, Schott J, Kudryavtzev DI, Dupré B (2005) Basalt weathering in Central Siberia under permafrost conditions. Geochim Cosmochim Acta 69(24):5659–5680CrossRefGoogle Scholar
  91. Quinn JA (1988) Relationship between temperature and radon levels in Lehma Caves, Nevada. US Natl Speleol Soc Bull 50:9–63Google Scholar
  92. Readon EJ, Allison GB, Fritz P (1979) Seasonal chemical and isotopic variations of soil CO2 at Trout Creeg, Ontario. J Hydrol 43:355–371CrossRefGoogle Scholar
  93. Rightmire CT (1978) Seasonal variation in pCO2 and 13C content of soil atmosphere. Water Res 14:691–692CrossRefGoogle Scholar
  94. Rose TP, Davisson ML, Criss RE (1996) Isotope hydrology of voluminous cold springs in fractured rock from an active volcanic region, northeastern California. J Hydrol 179:207–236CrossRefGoogle Scholar
  95. Sausse J, Jacquot E, Leroy J, Lespinasse M (2001) Evolution of crack permeability during fluid–rock interaction. Example of the Brézouard granite (Vosges, France). Tectonophysics 336:199–214CrossRefGoogle Scholar
  96. Self S, Keszthelyi L, Thordarson T (1998) The importance of pāhoehoe. Annu Rev Planet Sci 26:81–110CrossRefGoogle Scholar
  97. Simler R (2003) Diagramme software. Available on: http://www.lha.univ-avignon.fr/LHA-Logiciels.htm. Accessed the 05-02-2012
  98. Stallard RF, Edmond JM (1983) Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. J Geophys Res 88(C14):9671–9688CrossRefGoogle Scholar
  99. Stefansson A, Gislason SR (2001) Chemical weathering of basalts, Southwest Iceland: effect of rock crystallinity and secondary minerals on chemical fluxes to the oceans. Amer J Sci 301:513–556CrossRefGoogle Scholar
  100. Stewart BW, Capo RC, Chadwick OA (2001) Effects of rainfall on weathering rate, base cation provenance, and Sr isotope composition of Hawaiian soils. Geochim Cosmochim Acta 65:1087–1099CrossRefGoogle Scholar
  101. Stieljes L (1988) Hydrogéologie de l’île volcanique océanique de Mayotte (archipel des Comores, océan indien occidental) [Hydrogeology of the oceanic volcanic island of Mayotte (Comores archipelgo, occidental Indian ocean)]. Hydrogeol J 2:135–152Google Scholar
  102. Stumm W, Morgan JJ (1981) Aquatic chemistry. Wiley, New York, p 780Google Scholar
  103. Toutain JP, Baubron JC (1999) Gas geochemistry and seismotectonics: a review. Tectonophysics 304:1–27CrossRefGoogle Scholar
  104. Truesdell AH, Jones RF (1974) WATEQ, a computer program for calculating chemical equilibria of natural waters. US Geol Survey J Res 2(2):233–274Google Scholar
  105. Violette S, Ledoux E, Goblet P, Carbonnel JP (1997) Hydrologic and thermal modelling of an active volcano: the Piton de la Fournaise, La Réunion Island. J Hydrol 191:37–63CrossRefGoogle Scholar
  106. Vogel JC, Grootes PM, Mook WG (1970) Isotope fractionation between gaseous and dissolved carbon dioxide. J Phys 230:255–258Google Scholar
  107. White AF, Blum AE (1995) Effects of climate on chemical weathering in watersheds. Geochim Cosmochim Acta 59:1729–1747CrossRefGoogle Scholar
  108. Wigley TML (1975) Carbon 14 dating of groundwater from closed and open systems. Wat Res Res 11(2):324–328CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Guillaume Bertrand
    • 1
    • 2
    • 3
  • Hélène Celle-Jeanton
    • 2
    • 3
    • 4
  • Sébastien Loock
    • 2
    • 3
    • 4
  • Frédéric Huneau
    • 5
    • 6
  • Véronique Lavastre
    • 1
    • 2
    • 3
  1. 1.Laboratoire Magmas et VolcansUniversité de Lyon, Université Jean MonnetSaint EtienneFrance
  2. 2.CNRS, UMR 6524, LMVClermont-FerrandFrance
  3. 3.IRD, R 163, LMVClermont-FerrandFrance
  4. 4.Laboratoire Magmas et VolcansClermont Université, Université Blaise PascalClermont-FerrandFrance
  5. 5.Laboratoire d’Hydrogéologie, Faculté des Sciences et TechniquesUniversité de Corse Pascal PaoliCorteFrance
  6. 6.CNRS, UMR 6134, SPECorteFrance

Personalised recommendations