Skip to main content
Log in

Evaluating Copper Behavior in Urban Surface Waters Under Anthropic Influence. A Case Study from the Iguaçu River, Brazil

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

The goal of this work was to investigate the changes in copper behavior in Iguaçu River, a body of water strongly affected by urban inputs. This work was carried out in a subtropical Brazilian watershed suffering with high loads of raw sewage discharges from the Metropolitan Region of Curitiba. A comparison between sampling sites located upstream and downstream from the urban region revealed that human inputs are able to modify the water chemistry of the river in a short distance basis, that is, approximately nine miles. Probably, the most important alterations were the creation of an anaerobic environment as well as the enhancement of humic-coated suspended solids. These two aspects were determinant to explain the high concentrations observed for particulate copper (57% of total recoverable copper) and dissolved copper sulfide species (13%) in the water column. Copper in the sediment was also higher in the downstream site, probably due to the sedimentation of the Cu-enriched particles. However, copper sulfides at the bottom sediment may also be a potential source for the metal in the water column due to the creation of anaerobic conditions in both compartments. Labile copper concentration was not affected by the changes in water chemistry. Despite the fact that sewage discharges motivate the enhancement of organic matter, but not the increase in potential complexing agents, additional ligands such as chloride, carbonates, and anthropogenic dissolved organic ligands can be now computed as a part of the labile fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen HE, Fu G, Deng B (1993) Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments. Environ Toxicol Chem 12:1441–1453

    Article  Google Scholar 

  • Apha A, Wef (1995) Standard methods for the examination of water and wastewater. American Public Health Association, USA

  • Bordas F, Bourg ACM (1998) Effect of complexing agents (EDTA and ATMP) on the remobilization of heavy metals from a polluted river sediment. Aquat Geochem 4:201–214

    Article  Google Scholar 

  • Buerge-Weirich D, Behra P, Sigg L (2003) Adsorption of copper, nickel, and cadmium on goethite in the presence of organic ligands. Aquat Geochem 9:65–85

    Article  Google Scholar 

  • Cabaniss SE, Shuman MS (1988) Copper binding by dissolved organic matter: 1. Suwannee River fulvic-acid equilibria. Geochim Cosmochim Acta 52:185–193

    Article  Google Scholar 

  • Cabelo-García A, Prego R (2003) Land inputs, behaviour and contamination levels of copper in a Ria estuary (NW Spain). Mar Environ Res 56:403–422

    Article  Google Scholar 

  • Caccia VG, Millero FJ (2003) The distribution and seasonal variation of dissolved trace metals in Florida Bay and adjacent waters. Aquat Geochem 9:111–144

    Article  Google Scholar 

  • Chadwell SJ, Rickard D, Luther GW (1999) Electrochemical evidence for pentasulfide complexes with Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+. Aquat Geochem 5:29–57

    Article  Google Scholar 

  • Chapman PM, Wang F, Janssen C, Persoone G, Allen HE (1998) Ecotoxicology of metals in aquatic sediments: binding and release, bioavailability, risk assessment, and remediation. Can J Fish Aquat Sci 55:2221–2243

    Article  Google Scholar 

  • Chen J, LeBoeuf EJ, Dai S, Gu B (2003) Fluorescence spectroscopic studies of natural organic matter fractions. Chemosphere 50:639–647

    Article  Google Scholar 

  • Church TM, Scudlark JR (1998) Trace metals in estuaries: a Delaware Bay synthesis. metals in surface waters. Ann Arbor Press, USA

  • CONAMA (2004) Resolution 344-2004. Ministério do Meio Ambiente, Conselho Nacional do Meio Ambiente. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=445 Accessed 20 Nov 2010

  • CONAMA (2005) Resolution 357-2005. Ministério do Meio Ambiente, Conselho Nacional do Meio Ambiente. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=459 Accessed 20 Nov 2010

  • Cooper DC, Morse JW (1999) Selective extraction chemistry of toxic metal sulfides from sediments. Aquat Geochem 5:87–97

    Article  Google Scholar 

  • Cosovic B, Batina NE, Ciglenecki I (1992) Determination of elemental sulphur, sulphide and their mixtures in electrolyte solutions by a.c. voltammetry. Anal Chim Acta 267:157–164

    Article  Google Scholar 

  • Couceiro SEM, Hamada N, Luz SLB, Forsberg BR, Pimentel TP (2007) Deforestation and sewage effects on aquatic macroinvertebrates in urban streams in Manaus, Amazonas, Brazil. Hydrobiologia 575:271–284

    Article  Google Scholar 

  • Di Toro DM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cown CE, Pavlou SP, Allen HE, Thomas NA, Paquin RP (1991) Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 10:1541–1583

    Article  Google Scholar 

  • dos Anjos VE, Abate G, Grassi MT (2010) Comparação da labilidade de metais empregando voltametria, difusão em filmes finos por gradiente de concentração (DGT) e modelo computacional. Quím Nova 33:1307–1312

    Article  Google Scholar 

  • Florence TM, Morrison GM, Stauber JL (1992) Determination of trace element speciation and the role of speciation in aquatic toxicity. Sci Total Environ 125:1–13

    Article  Google Scholar 

  • Gerringa LJA, Hummel H, Moerdijk-Poortvliet TCW (1998) Relations between free copper and salinity, dissolved and particulate organic carbon in the Oosterschelde and Westerschelde, Netherlands. J Sea Res 40:193–203

    Article  Google Scholar 

  • Giblin AE, Wieder RK (1992) Sulphur cycling in marine and freshwater wetlands. In: Howarth RW, Stewart JWB, Ivanov MV (eds) Sulphur cycling on the continents. Wiley, New York, pp 85–117

    Google Scholar 

  • Grassi MT, Shi B, Allen HE (2000) Partition of copper between dissolved and particulate phases using aluminum oxide as an aquatic model phase: effects of ph, solids and organic matter. J Braz Chem Soc 11:516–524

    Article  Google Scholar 

  • Guyton C (1986) Textbook of medical physiology. WB Saunders, USA

    Google Scholar 

  • IBGE (2002) Pesquisa Nacional de Saneamento Básico—2000. Instituto Brasileiro de Geografia e Estatística. http://www.ibge.gov.br/home/estatistica/populacao/condicaodevida/pnsb/pnsb.pdf. Accessed 20 Nov 2010

  • Irwin RJ, VanMouwerik M, Stevens L, Seese MD, Basham W (1998) Environmental contaminants encyclopedia. National Park Service, Water Resources Division, Fort Collins

    Google Scholar 

  • Lee JS, Lee BG, Luoma SN, Choi HJ, Koh CH, Brown CL (2000) Influence of acid volatile sulfides and metal concentrations on metal partitioning in contaminated sediments. Environ Sci Technol 34:4511–4516

    Article  Google Scholar 

  • Lu Y, Allen HE (2001) Partitioning of copper onto suspended particulate matter in river waters. Sci Total Environ 277:119–132

    Article  Google Scholar 

  • Luther GW, Rickard DT, Theberge S, Olroyd A (1996) Determination of metal (Bi)Sulfide stability constants of Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+ by voltammetric methods. Environ Sci Technol 30:671–679

    Article  Google Scholar 

  • Luther GW, Theberge SM, Rickard DT (1999) Evidence for aqueous clusters as intermediates during zinc sulfide formation. Geochim Cosmochim Acta 63:3159–3169

    Article  Google Scholar 

  • Martins CC, Ferreira JA, Taniguchi S, Mahiques MM, Bícego MC, Montone RC (2008) Spatial distribution of sedimentary linear alkylbenzenes and faecal steroids of Santos Bay and adjoining continental shelf, SW Atlantic, Brazil: origin and fate of sewage contamination in the shallow coastal environment. Mar Pollut Bull 56:1359–1363

    Article  Google Scholar 

  • Meylan S, Behra R, Sigg L (2003) Accumulation of copper and zinc in periphyton in response to dynamic variations of metal speciation in freshwater. Environ Sci Technol 37:5204–5212

    Article  Google Scholar 

  • Müller B, Duffek A (2001) Similar adsorption parameters for trace metals with different aquatic particles. Aquat Geochem 7:107–126

    Article  Google Scholar 

  • Ometo JPHB, Martinelli LA, Ballester MV, Gessner A, Krusche AV, Victoria RL, Williams M (2000) Effects of land use on water chemistry and macroinvertebrates rates in two streams of the Piracicaba river basin, south-east Brazil. Freshw Biol 44:327–337

    Article  Google Scholar 

  • Peuravuori J, Koivikko R, Pihlaja K (2002) Characterization, differentiation and classification of aquatic humic matter separated with different sorbents: synchronous scanning fluorescence spectroscopy. Water Res 36:4552–4562

    Article  Google Scholar 

  • Pullin MJ, Cabaniss SE (1995) Rank analysis of the pH-dependent synchronous fluorescence spectra of six standard humic substances. Environ Sci Technol 29:1460–1467

    Article  Google Scholar 

  • Rozan TF, Benoit G (1999) Geochemical factors controlling free Cu ion concentration in river water. Geochim Cosmochim Acta 63:3311–3319

    Article  Google Scholar 

  • Rozan TF, Benoit G, Luther GW (1999) Measuring metal sulphide complexes in oxic rivers waters with square wave voltammetry. Environ Sci Technol 33:3021–3026

    Article  Google Scholar 

  • Rozan TF, Lassman ME, Ridge DP, Luther GW (2000) Evidence for iron, copper and zinc complexation as multinuclear sulphide clusters in oxic rivers. Nature 406:879–882

    Article  Google Scholar 

  • Scarano G, Morelli E, Seritti A, Zirino A (1990) Determination of Cu in seawater by anodic stripping voltammetry using ethylenediamine. Anal Chem 62:943–948

    Article  Google Scholar 

  • Scarano G, Bramanti E, Zirino A (1992) Determination of copper complexation in sea water by a ligand competition technique with voltammetric measurement of the labile metal fraction. Anal Chim Acta 264:153–162

    Article  Google Scholar 

  • Scheffer EWO, Grassi MT (2010) Avaliação da influência de sulfetos solúveis na complexação do cobre em águas superficiais empregando métodos voltamétricos. Quím Nova 33:1254–1258

    Article  Google Scholar 

  • Scheffer EWO, Sodré FF, Grassi MT (2007) Fatores que governam a especiação do cobre em ambientes aquáticos urbanos: evidências da contribuição de sulfetos solúveis. Quim Nova 30:332–338

    Article  Google Scholar 

  • Schnitzler DC (2008), Avaliação da Qualidade de Sedimentos de rios da Região Metropolitana de Curitiba com ênfase em Espécies Metálicas. PhD thesis, University of Paraná

  • Schnitzler DC, Grassi MT, Quináia SP (2009) Aplicação de planejamento fatorial a protocolo de extração e fixação de sulfetos volatilizáveis por acidificação (SVA) em amostras de sedimento. Quim Nova 32:1315–1320

    Article  Google Scholar 

  • Senesi N (1990) Molecular and quantitative aspects of the chemistry of fulvic acid and its interactions with metal ions and organic chemicals. Part 2. The fluorescence spectroscopy approach. Anal Chim Acta 232:77–106

    Article  Google Scholar 

  • Shi B, Allen HE, Grassi MT, Ma HZ (1998) Modeling copper partitioning in surface waters. Water Res 32:3756–3764

    Article  Google Scholar 

  • Sigg L, Xue HB, Kistler D, Sshonenberger R (2000) Size fractionation (dissolved, colloidal and particulate) of trace metals in the Thur River, Switzerland. Aquat Geochem 6:413–434

    Article  Google Scholar 

  • Simpson SL, Apte SC, Batley GE (1998) Effect of short-term resuspension events on trace metal speciation in polluted anoxic sediments. Environ Sci Technol 32:620–625

    Article  Google Scholar 

  • Skei JM, Loring DH, Rantala RTT (1996) Trace metals in suspended particulate matter and in sediment trap material from a permanently anoxic fjord—Framvaren, South Norway. Aquat Geochem 2:131–147

    Article  Google Scholar 

  • Sodré FF, Grassi MT (2007a) Assessment of anthropogenic influences on copper complexation by aquatic dissolved organic matter using synchronous fluorescence. J Braz Chem Soc 18:1136–1144

    Article  Google Scholar 

  • Sodré FF, Grassi MT (2007b) Changes in copper speciation and geochemical fate in freshwaters following sewage discharges. Water Air Soil Poll 178:103–112

    Article  Google Scholar 

  • Sodré FF, Peralta-Zamora PG, Grassi MT (2004) Microwave-assisted photochemical digestion of natural waters: application in partition and speciation studies of copper. Quim Nova 27:695–700

    Article  Google Scholar 

  • Sodré FF, Anjos VEA, Prestes EC, Grassi MT (2005) Identification of copper sources in urban surface waters using the principal component analysis based on aquatic parameters. J Environ Monit 7:581–585

    Article  Google Scholar 

  • Stumm W (1992) Chemistry of the solid water interface—processes at the mineral-water and particle-water-interface in natural systems. Wiley, USA

    Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley, USA

    Google Scholar 

  • SUDERHSA (1997) Qualidade das Águas Interiores do Estado do Paraná: 1987–1995. SUDERHSA, Curitiba

    Google Scholar 

  • Sukola K, Wang F, Tessier A (2005) Metal-sulfide species in oxic waters. Anal Chim Acta 528:183–195

    Article  Google Scholar 

  • Ure A, Davidson C (2001) Chemical speciation in the environment, 2nd edn. Wiley-Blackwell

  • U.S.EPA (1996) Method 1669—sampling ambient water for determination of trace metals at EPA water quality criteria level. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Verweij W, Glazewski R, Dehaan H (1992) Speciation of copper in relation to its bioavailability. Chem Speciat Bioavailab 4:43–51

    Google Scholar 

  • Warren LA, Haak EA (2001) Biogeochemical controls on metal behaviour in freshwater environments. Earth Sci Rev 54:261–320

    Article  Google Scholar 

  • Westerhoff P, Anning D (2000) Concentrations and characteristics of organic carbon in surface water in Arizona: influence of urbanization. J Hydrol 236:202–222

    Article  Google Scholar 

  • Yu KC, Tsai LJ, Chen SH, Ho ST (2001) Chemical binding of heavy metals in anoxic river sediments. Water Res 35:4086–4094

    Article  Google Scholar 

  • Zachara JM, Resch CT, Smith SC (1994) Influence of humic substances on Co2+ sorption by a subsurface mineral separate and its mineralogic components. Geochim Cosmochim Acta 58:533–566

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and to Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Paraná for the financial support. We also thank Prof. ACB Dias for revising the manuscript data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando F. Sodré.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sodré, F.F., Schnitzler, D.C., Scheffer, E.W.O. et al. Evaluating Copper Behavior in Urban Surface Waters Under Anthropic Influence. A Case Study from the Iguaçu River, Brazil. Aquat Geochem 18, 389–405 (2012). https://doi.org/10.1007/s10498-012-9162-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-012-9162-7

Keywords

Navigation