Skip to main content

Advertisement

Log in

Iron and Trace Metals in Microbial Mats and Underlying Sediments: Results From Guerrero Negro Saltern, Baja California Sur, Mexico

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Total trace metals (Cd, Co, Cu, Fe, Mn, Ni, Pb, Zn), Al, and pyrite- and reactive-associated metals were measured for the first time in a microbial mat and its underlying anoxic-sulfidic sediment collected in the saltern of Guerrero Negro (GN), Baja California Sur, Mexico. It is postulated that the formation of acid volatile sulfide (AVS) and pyrite in the area of GN could be limited by the availability of reactive Fe, as suggested by its limited abundance (mat and sediment combined average value of only 19 ± 10 μmol g−1; n = 22) as well as the low pyrite (0.89–7.9 μmol g−1) and AVS (0.19–21 μmol g−1) concentrations (for anoxic-sulfidic sediments), intermediate degrees of pyritization (12–50%), high degrees of sulfidization (14–100%), generally low degrees of trace metal pyritization, and slight impoverishment in total Fe. This is a surprising result considering the large potential reservoir of available Fe in the surrounding desert. Our findings suggest that pyrite formation in the cycling of trace metals in the saltern of GN is not very important and that other sedimentary phases (e.g., organic matter, carbonates) may be more important reservoirs of trace elements. Enrichment factors [EFMe = (Me/Al)sample/(Me/Al)background] of Co, Pb, and Cd were high in the mat (EFMe = 2.2 ± 0.4, 2.8 ± 1.6 and 34.5 ± 9.8, respectively) and even higher in the underlying sediment (EFMe = 4.7 ± 1.5, 14.5 ± 6.2 and 89 ± 27, respectively), but Fe was slightly impoverished (average EFFe of 0.49 ± 0.13 and 0.50 ± 0.27 in both mat and sediment). Organic carbon to pyrite-sulfur (C/S) molar ratios measured in the mat (2.9 × 102–27 × 102) and sediment (0.81 × 102–6.6 × 102) were, on average, approximately 77 times higher than those typically found in marine sediments (7.5 ± 2.1). These results may indicate that ancient evaporation basins or hypersaline sedimentary environments could be identified on the basis of extremely high C/S ratios (e.g., >100) and low reactive Fe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alvarez-Iglesias P, Rubio B (2008) The degree of trace metal pyritization in subtidal sediments of a mariculture area: application to the assessment of toxic risk. Mar Pollut Bull 56:973–983

    Article  Google Scholar 

  • Bebout BM, Paerl HW, Bauer JE, Canfield DE, Des Marais DJ (1994) Nitrogen cycling in microbial mat communities: the quantitative importance of N-fixation and other sources of N for primary productivity. In: Stal LJ and Caumette P (eds) Microbial mats: structure, development and environmental significance, NATO ASI Series, Vol G35. Springer, Berlin, pp 265–271

  • Bebout BM, Hoehler TM, Thamdrup B, Albert D, Carpenter SP, Hogan M, Turk K, Des Marais DJ (2004) Methane production by microbial mats under low sulphate concentrations. Geobiology 2:87–96

    Article  Google Scholar 

  • Bender J, Phillips P (2004) Microbial mats for multiple applications in aquaculture and bioremediation. Bioresour Technol 94:229–238

    Article  Google Scholar 

  • Bender J, Lee RF, Phillips P (1995) Uptake and transformation of metals and metalloids by microbial mats and their use in bioremediation. J Ind Microbiol 14:113–118

    Article  Google Scholar 

  • Bender J, Duff MC, Phillips P, Hill m (2000) Bioremediation and bioreduction of dissolved U(VI) by microbial mat consortium supported on silica gel particles. Environ Sci Technol 34:3235–3241

    Article  Google Scholar 

  • Berner RA (1970) Sedimentary pyrite formation. Am J Sci 268:1–23

    Article  Google Scholar 

  • Berner RA (1981) A new geochemical classification of sedimentary environments. J Sed Petrol 51(2):359–365

    Google Scholar 

  • Berner RA (1982) Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. Am J Sci 282:451–473

    Article  Google Scholar 

  • Berner RA (1984) Sedimentary pyrite formation: an update. Geochim Cosmochim Acta 48:605–615

    Article  Google Scholar 

  • Berner RA, Raiswell R (1984) C/S method for distinguishing freshwater from marine sedimentary rocks. Geology 12:365–368

    Article  Google Scholar 

  • Boesen C, Postma D (1988) Pyrite formation in anoxic environments of the Baltic. Am J Sci 288:575–603

    Article  Google Scholar 

  • Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiol 5:401–411

    Article  Google Scholar 

  • Burke K, Sengör AMC (1988) Ten metre global sea-level change associated with South Atlantic Aptian salt deposition. Mar Geol 83:309–312

    Article  Google Scholar 

  • Çagatay MN, Borowski WS, Ternois YG (2001) Factors affecting the diagenesis of Quaternary sediments at ODP Leg 172 sites in western North Atlantic: evidence from pore water and sediment geochemistry. Chem Geol 175:467–484

    Article  Google Scholar 

  • Canavan RW, Van Cappellen P, Zwolsman JJG, van den Berg GA, Slomp CP (2007) Geochemistry of trace metals in a fresh water sediment: field results and diagenetic modeling. Sci Tot Environ 381:263–279

    Article  Google Scholar 

  • Canfield DE, Des Marais DJ (1991) Aerobic sulfate reduction in microbial mats. Science 251:1471–1473

    Article  Google Scholar 

  • Canfield DE, Des Marais DJ (1993) Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat. Geochim Cosmochim Acta 57:3971–3984

    Article  Google Scholar 

  • Carignan R, Tessier A (1988) The co-diagenesis of sulfur and iron in acid lake sediments of southwestern Quebec. Geochim Cosmochim Acta 52:1179–1188

    Article  Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458

    Article  Google Scholar 

  • Cooper DC, Morse JW (1996) The chemistry of Offatts Bayou, Texas: a seasonally highly sulfidic basin. Estuaries 19:595–611

    Article  Google Scholar 

  • Cornwell JC, Morse JW (1987) The characterization of iron sulfide minerals in marine sediments. Mar Chem 22:193–206

    Article  Google Scholar 

  • D’Amelio ED, Cohen Y, Des Marais DJ (1989) Comparative functional ultrastructure of two hypersaline submerged cyanobacterial mats: Guerrero Negro, Baja California Sur, Mexico, and Solar Lake, Sinai, Egypt. In: Cohen Y, Rosenberg E (eds) Microbial mats, physiological ecology of benthic microbial communities. American Society for Microbiology, Washington, DC, pp 97–113

    Google Scholar 

  • Daesslé LW, Carriquiry JD, Navarro R, Villaescusa-Celaya JA (2000) Geochemistry of surficial sediments from Sebastián Vizcaíno Bay, Baja California. J Coastal Res 16:1133–1145

    Google Scholar 

  • Decker KLM, Potter CS, Bebout BM, Des Marais DJ, Carpenter S, Discipulo M, Hoehler TM, Miller SR, Thamdrup B, Turk KA, Visscher PT (2005) Mathematical simulation of the diel O, S, and C biogeochemistry of a hypersaline microbial mat. FEMS Microbiol Ecol 52:377–395

    Article  Google Scholar 

  • Des Marais DJ (1995) The biogeochemistry of hypersaline microbial mats. In: Jones JG (ed) Advances in microbial ecology. Plenum Press, New York, pp 251–274

    Google Scholar 

  • Des Marais DJ, Walter MR (1999) Astrobiology: exploring the origins, evolution, and distribution of life in the universe. Annu Rev Ecol Syst 30:397–420

    Article  Google Scholar 

  • Des Marais DJ, Cohen Y, Nguyen H, Cheatham M, Cheatham T, Munoz E (1989) Carbon isotopic trends in the hypersaline ponds and microbial mats at Guerrero Negro, Baja California Sur, Mexico: implications for Precambrian stromatolites. In: Cohen Y, Rosenberg E (eds) Microbial mats, physiological ecology of benthic microbial communities. American Society for Microbiology, Washington, DC, pp 191–203

    Google Scholar 

  • Des Marais DJ, D’Amelio E, Farmer JD, Jørgensen BB, Palmisano AC, Pierson BK (1992) Case study of a modern microbial mat-building community: the submerged cyanobacterial mats of Guerrero Negro, Baja California Sur, Mexico. In: Schopf WJ, Klein C (eds) The proterozoic biosphere: a multidisciplinary study. Cambridge University Press, New York, pp 325–334

    Google Scholar 

  • Di Toro DM, Mahony JD, Hansen DJ, Scott KJ, Hicks MB, Mayr SM, Redmond MS (1990) Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environ Toxicol Chem 9:1487–1502

    Article  Google Scholar 

  • Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13:429–438

    Article  Google Scholar 

  • Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162

    Article  Google Scholar 

  • Dymond J, Collier RW, Watwood ME (1989) Bacterial mats from Crater Lake, Oregon and their relationship to possible deep-lake hydrothermal venting. Nature 342:673–675

    Article  Google Scholar 

  • Edgcomb VP, Kysela DT, Teske A, de Vera Gomez A, Sogin ML (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci USA 99:7658–7662

    Article  Google Scholar 

  • Ferris MJ, Muyzer G, Ward DM (1996) Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62:340–346

    Google Scholar 

  • Gagnon C, Mucci A, Pelletier E (1995) Anomalous accumulation of acid-volatile sulphides (AVS) in a coastal marine sediment, Saguenay Fjord, Canada. Geochim Cosmochim Acta 59:2663–2675

    Article  Google Scholar 

  • Garrels RM, Christ CL (1965) Solutions, minerals and equilibria. Harper and Row, New York

  • Gendron A, Silverberg N, Sundby B, Lebel J (1986) Early diagenesis of cadmium and cobalt in sediments of the Laurentian Trough. Geochim Cosmochim Acta 50:741–747

    Article  Google Scholar 

  • Gorham E, Swine DJ (1965) The influence of oxidizing and reducing conditions upon the distribution of some elements in lake sediments. Limnol Oceanogr 10:268–278

    Article  Google Scholar 

  • Granger J, Ward BB (2003) Accumulation of nitrogen oxides in copper-limited cultures of denitrifying bacteria. Limnol Oceanogr 48:313–318

    Article  Google Scholar 

  • Grotzinger JP, Knoll AH (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu Rev Earth Planet Sci 27:313–358

    Article  Google Scholar 

  • Guo L, Santschi PH, Warnken KW (1995) Dynamics of dissolved organic carbon (DOC) in oceanic environments. Limnol Oceanogr 40:1392–1403

    Article  Google Scholar 

  • Hedges JI, Stern JH (1984) Carbon and nitrogen determinations of carbonate-containing solids. Limnol Oceanogr 29:657–663

    Article  Google Scholar 

  • Heggie D, Lewis T (1984) Cobalt in pore waters of marine sediments. Nature 311:453–455

    Article  Google Scholar 

  • Henneke E, Luther GW III, de Lange GJ, Hoefs J (1997) Sulphur speciation in anoxic hypersaline sediments from the eastern Mediterranean Sea. Geochim Cosmochim Acta 61:307–321

    Article  Google Scholar 

  • Hirst DM (1974) Geochemistry of sediments from eleven Black Sea cores. In: Degens ET, Ross DA (eds) The Black Sea–geology, chemistry and biology. American Association of petroleum geologists, Memoir 20. Tulsa, Oklahoma, pp 430–455

  • Hoehler TM, Bebout BM, Des Marais DJ (2001) The role of microbial mats in the production of reduced gases on the early earth. Nature 412:324–327

    Article  Google Scholar 

  • Huerta-Diaz MA, Morse JW (1990) A quantitative method for determination of trace metal concentrations in sedimentary pyrite. Mar Chem 29:119–144

    Article  Google Scholar 

  • Huerta-Diaz MA, Morse JW (1992) Pyritization of trace metals in anoxic marine sediments. Geochim Cosmochim Acta 56:2681–2702

    Article  Google Scholar 

  • Hurtgen MT, Lyons TW, Ingall ED, Cruse AM (1999) Anomalous enrichments of iron monosulfide in euxinic marine sediments and the role of H2S in iron sulfide transformations: examples from Effingham Inlet, Orca Basin, and the Black Sea. Am J Sci 299:556–588

    Article  Google Scholar 

  • Javor BJ (1983) Planktonic standing crop and nutrients in a saltern ecosystem. Limnol Oceanogr 28:153–159

    Article  Google Scholar 

  • Jonkers HM, Koh I-O, Behrend P, Muyzer G, de Beer D (2005) Aerobic organic carbon mineralization by sulfate-reducing bacteria in the oxygen-saturated photic zone of a hypersaline microbial mat. Microbial Ecol 49:291–300

    Article  Google Scholar 

  • Kasper-Zubillaga JJ, Zolezzi-Ruiz H (2007) Grain size, mineralogical and geochemical studies of coastal and inland dune sands from El Vizcaíno Desert, Baja California Peninsula, Mexico. Rev Mex Cienc Geol 24:423–438

    Google Scholar 

  • Knoll AH, Barghoorn ES (1977) Archean microfossils showing cell division from the Swaziland system of South Africa. Science 198:396–398

    Article  Google Scholar 

  • Li Y-H, Schoonmaker JE (2005) Chemical composition and mineralogy of marine sediments. In: Mackenzie FT (ed) Sediments, diagenesis, and sedimentary rocks. Treatise on geochemistry. Holland HD, Turekian KK (eds), Vol 7, 1st edn. Elsevier, Oxford, pp 1–35

  • Luther GW III (2005) Acid volatile sulfide—a comment. Mar Chem 97:198–205

    Article  Google Scholar 

  • Luther GW III, Kostka JE, Church TM, Sulzberger B, Stumm W (1992) Seasonal iron cycling in the salt-marsh sedimentary environment: the importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively. Mar Chem 40:81–103

    Article  Google Scholar 

  • Lyons TW (1997) Sulfur isotopic trends and pathways of iron sulfide formation in upper holocene sediments of the anoxic Black Sea. Geochim Cosmochim Acta 61:3367–3382

    Article  Google Scholar 

  • Lyons TW, Werne JP, Hollander DJ, Murray RW (2003) Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela. Chem Geol 195:131–157

    Article  Google Scholar 

  • Martin JH, Broenkow WW (1975) Cadmium in plankton: elevated concentrations off Baja California. Science 190:884–885

    Google Scholar 

  • Mehrabi S, Ekanemesang UM, Aikhionbare FO, Kimbro KS, Bender J (2001) Identification and characterization of Rhodopseudomonas sp., a purple, non-sulfur bacterium from microbial mats. Biomol Eng 18:49–56

    Article  Google Scholar 

  • Mir J, Martínez-Alonso M, Caumette P, Guerrero R, Esteve I (2002) Sulfide fluxes in a microbial mat from the Ebro Delta, Spain. Int Microbiol 5:133–138

    Article  Google Scholar 

  • Morel FMM, Hudson RJM, Price NM (1991) Limitation of productivity by trace metals in the sea. Limnol Oceanogr 36:1742–1755

    Article  Google Scholar 

  • Morse JW (1994) Interactions of trace metals with authigenic sulfide minerals: implications for their bioavailability. Mar Chem 46:1–4

    Article  Google Scholar 

  • Morse JW, Cornwell JC (1987) Analysis and distribution of iron sulfide minerals in recent anoxic marine sediments. Mar Chem 22:55–69

    Article  Google Scholar 

  • Morse JW, Thomson H, Finneran DW (2007) Factors controlling sulfide geochemistry in sub-tropical estuarine and bay sediments. Aquat Geochem 13:143–156

    Article  Google Scholar 

  • Nava-Lopez C (2002) Biogeoquímica de metales traza en sedimentos frente a la costa noroccidental de Baja California, México. PhD Dissertation, Universidad Autónoma de Baja California

  • Nava-López C, Huerta-Diaz MA (2001) Degree of trace metal pyritization in sediments from the Pacific coast of Baja California, Mexico. Cienc Mar 27:289–309

    Google Scholar 

  • Obernosterer I, Herndl GJ (2000) Differences in the optical and biological reactivity of the humic and non-humic dissolved organic carbon component in two contrasting coastal marine environments. Limnol Oceanogr 45:1120–1129

    Article  Google Scholar 

  • Ortiz-Zamora G, Huerta-Díaz MA, Salas de León DA, Monreal Gómez MA (2002) Degrees of pyritization in the Gulf of Mexico in sediments influenced by the Coatzacoalcos and the Grijava-Usumacinta rivers. Cienc Mar 28:369–379

    Google Scholar 

  • Otero XL, Macias F (2003) Spatial variation in pyritization of trace metals in salt-marsh soils. Biogeochemistry 62:59–86

    Article  Google Scholar 

  • Otero XL, Huerta-Diaz MA, Macías F (2003) Infuence of a turbidite deposit on the extent of pyritization of iron, manganese and trace metals in sediments from the Guaymas Basin, Gulf of California (Mexico). Appl Geochem 18:1149–1163

    Article  Google Scholar 

  • Otero XL, Vidal-Torrado P, Calvo de Anta RM, Macías F (2005) Trace elements in biodeposits and sediments from mussel culture in the Ría de Arousa (Galicia, NW Spain). Environ Pollut 136:119–134

    Article  Google Scholar 

  • Paerl HW, Pinckney JL (1996) A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microbial Ecol 31:225–247

    Article  Google Scholar 

  • Paniagua-Michel J, Garcia O (2003) Ex-situ bioremediation of shrimp culture effluent using constructed microbial mats. Aquacult Eng 28:131–139

    Article  Google Scholar 

  • Park R (1976) A note on the significance of laminations in stromatolites. Sedimentology 23:379–393

    Article  Google Scholar 

  • Paropkari AL, Iyer SD, Chauhan OS, Babu CP (1991) Depositional environments inferred from variations of calcium carbonate, organic carbon and sulfide sulfur: a core from southwestern Arabian Sea. Geo-Mar Lett 11:96–102

    Article  Google Scholar 

  • Paytan A, Martinez-Ruiz F, Eagle M, Ivy A, Wankel SD (2004) Using sulfur isotopes to elucidate the origin of barite associated with high organic matter accumulation events in marine sediments. Sulfur Biogeochem, GSA special paper no. 379, pp 151–160

  • Price NM, Morel FMM (1990) Cadmium and cobalt substitution for zinc in a marine diatom. Nature 344:658–660

    Article  Google Scholar 

  • Price NM, Morel FMM (1991) Colimitation of phytoplankton growth by nickel and nitrogen. Limnol Oceanogr 36:1071–1077

    Article  Google Scholar 

  • Raiswell R, Berner RA (1985) Pyrite formation in euxinic and semi-euxinic sediments. Am J Sci 285:710–724

    Article  Google Scholar 

  • Raiswell R, Canfield DE (1998) Sources of iron for pyrite formation in marine sediments. Am J Sci 298:219–245

    Article  Google Scholar 

  • Reimer JJ (2011) Geochemistry of phosphorus and selected trace metals in sediments located along a salinity gradient in the evaporation ponds of Guerrero Negro, Baja California Sur. PhD Dissertation, Universidad Autónoma de Baja California

  • Rickard D, Morse JW (2005) Acid volatile sulfide (AVS). Mar Chem 97:141–197

    Article  Google Scholar 

  • Rochelle-Newall EJ, Fisher TR (2002) Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay. Mar Chem 77:23–41

    Article  Google Scholar 

  • Saito MA, Moffett JW, Chisholm SW, Waterbury JB (2002) Cobalt limitation and uptake in Prochlorococcus. Limnol Oceanogr 47:1629–1636

    Article  Google Scholar 

  • Schropp SJ, Lewis FG, Windom HL, Ryan JD (1990) Interpretation of metal concentrations in estuarine sediments of Florida using aluminum as a reference element. Estuaries 13:227–235

    Article  Google Scholar 

  • Skirnisdottir S, Hreggvidsson GO, Hjörleifsdottir S, Marteinsson VT, Petursdottir SK, Holst O, Kristjansson JK (2000) Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microbiol 66:2835–2841

    Article  Google Scholar 

  • Steinberger A, Schiff KC (2002) Characteristics of effluents from large municipal wastewater treatment facilities between 1998 and 2000. In: SCCWRP Southern California coastal water research project biennial report 2001–2002. Southern California coastal water research project authority, pp 2–16

  • Summers JK, Wade TL, Engle VD, Malaeb ZA (1996) Normalization of metal concentrations in estuarine sediments from the Gulf of Mexico. Estuaries 19:581–594

    Article  Google Scholar 

  • Tesoriero AJ, Pankow JF (1996) Solid solution partitioning of Sr2+, Ba2+, and Cd2+ to calcite. Geochim Cosmochim Acta 60:1053–1063

    Article  Google Scholar 

  • Tice MM, Lowe DR (2004) Photosynthetic microbial mats in the 3, 416-Myr old ocean. Nature 431:549–552

    Article  Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the Earth’s crust. Geol Soc Amer Bull 72:175–192

    Article  Google Scholar 

  • Vincent WF, James MR (1996) Biodiversity in extreme aquatic environments: lakes, ponds and streams of the Ross Sea sector, Antarctica. Biodivers Conserv 5:1572–9710

    Article  Google Scholar 

  • Vincent WF, Gibson JAE, Pienitz R, Villeneuve V, Broady PA, Hamilton PB, Howard-Williams C (2000) Ice shelf microbial ecosystems in the high arctic and implications for life on Snowball Earth. Naturwissenschaften 87:1432–1904

    Article  Google Scholar 

  • Walsh MM (1992) Microfossils and possible microfossils from the Early Archean Onverwacht Group, Barberton Mountain Land, South Africa. Precambrian Res 54:271–293

    Article  Google Scholar 

  • Wijsman JWM, Middelburg JJ, Heip CHR (2001) Reactive iron in Black Sea sediments: implications for iron cycling. Mar Geol 172:167–180

    Article  Google Scholar 

  • Wortmann UG, Chernyavsky BM (2007) Effect of evaporite deposition on early Cretaceous carbon and sulphur cycling. Nature 446:654–656

    Article  Google Scholar 

Download references

Acknowledgments

We thank Arturo Siqueiros Valencia for his invaluable help in the field to the management and technical staff of the Compañía Exportadora de Sal S.A. (ESSA) for their assistance and support. To Brad Bebout and David Des Marais of NASA-Ames for their advice and for allowing us to accompany them on their permits. The paper benefitted greatly from the thoughtful reviews of Alfonso Mucci and two anonymous journal reviewers. This project was funded by the Consejo Nacional de Ciencias y Tecnologia (CONACYT) project number CB-2005-1-025341. Support for E.A.-F. in the form of a Consejo Nacional de Ciencia y Tecnología (CONACYT) Research Assistantship is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Angel Huerta-Diaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huerta-Diaz, M.A., Delgadillo-Hinojosa, F., Otero, X.L. et al. Iron and Trace Metals in Microbial Mats and Underlying Sediments: Results From Guerrero Negro Saltern, Baja California Sur, Mexico. Aquat Geochem 17, 603–628 (2011). https://doi.org/10.1007/s10498-011-9126-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-011-9126-3

Keywords

Navigation