Skip to main content
Log in

Partition of Elements Between Solid and Liquid Phases in Aquatic Environments

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

The average composition of natural waters such as rivers, lakes, ocean, and hydrothermal vents and corresponding solids in equilibrium (e.g., river-suspended particles or shale; lake sediments; oceanic pelagic clay, organisms, and manganese nodules; and the mid-ocean ridge basalts) do not change randomly. The observed positive correlation between the electron binding energy (I z [*I z ]) and logarithms of bulk distribution coefficient (log K d ) for cations with charge of 1–4, and the negative correlation between I z [*I z ] and log K d for anions in various aquatic systems are consistent with the prediction from the surface complexation model. In other words, the bond strength between the adsorbed cation and the surface oxygen of hydrated metal oxides, and between the oxygen of adsorbed oxyanion and the surface metal of hydrated metal oxides control the partition of elements between solid and associated liquid in natural aquatic systems. For Mn, Co, Ce, Pb, and Tl, the oxidative uptake at the solid–water interface in the ocean is an additional important process. For alkali and alkaline-earth cations with large ionic radius (such as Cs, Rb, K, and Ba), their relatively small secondary solvation energy further enhances their adsorption onto solid particles. For living and non-living organic matter, the adsorbed B-type cations form extra strong bindings with hydrophilic functional groups such as –SH and –NH2 on organic matter surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Baes CF Jr, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York

    Google Scholar 

  • Baes CF Jr, Mesmer RE (1981) The thermodynamics of cation hydrolysis. Am J Sci 281:935–962

    Article  Google Scholar 

  • Balistrieri L, Brewer PG, Murray JW (1981) Scavenging residence times of trace metals and surface chemistry of sinking particles in the deep ocean. Deep Sea Res 28A:101–121

    Google Scholar 

  • Barth TW (1952) Theoretical petrology. Wiley, New York

    Google Scholar 

  • Beasley TM, Lorz HV (1986) A review of the biological and geochemical behavior of technetium in the marine environment. In: Desmt G, Myttenaere C (eds) Technetium in the environment. Elsevier, Amsterdam

    Google Scholar 

  • Berner EK, Berner RA (1987) The global water cycle: geochemistry and environment. Prentice-Hall, Englewood

    Google Scholar 

  • Bertram MA, Cowen JP (1997) Morphological and compositional evidence for biotic precipitation of marine barite. J Mar Res 55:577–593

    Google Scholar 

  • Broecker WS, Peng TH (1982) Tacers in the sea. Columbia University Press, New York

  • Buffle J (1988) Complexation reactions in aquatic systems. Ellis Horwood Limited, England

    Google Scholar 

  • Byrne RH (2002) Inorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratios. Geochem Trans 3:11–16

    Article  Google Scholar 

  • Chen JH, Wasserburg GJ, Von Damm KL, Edmond JM (1986) The U-Th-Pb systematics in hot springs on the East Pacific Rise at 21°N and Guaymas Basin. Geochim Cosmochim Acta 50:2467–2480

    Article  Google Scholar 

  • Choppin GR, Liljenzin JO, Rydberg J (2001) Radiochemistry and nuclear chemistry. Butterworth-Heinemann Ltd, Boston

    Google Scholar 

  • Cochran JK, Livingston HD, Hirschberg DJ, Surprenant LD (1987) Natural and anthropogenic radionuclide distributions in the northwest Atlantic Ocean. Earth Planet Sci Lett 84:135–152

    Article  Google Scholar 

  • Cotton S (1991) Lanthanides and actinides. Oxford University Press, Oxford

    Google Scholar 

  • Dehairs F, Chesselet R, Jedwab J (1980) Discrete suspended particles of barite and the barium cycle in the open ocean. Earth Planet Sci Lett 49:528–550

    Google Scholar 

  • Doucet FJ, Lead JR, Santschi PH (2007) Colloid-trace element interactions in aquatic systems. In: Wilkinson K, Lead J (eds) Environmental colloids and particles: behavior, separation and characterization. IUPAC Series on Analytical and Physical Chemistry of Environmental Systems. Wiley, New York, pp 95–158

    Google Scholar 

  • Dugger DL, Stanton J, Irby BN, McConnell L, Maatman RW (1964) The exchange of twenty metal ions with the weakly acidic silanol group of silica gel. J Phys Chem 68:757–760

    Article  Google Scholar 

  • Firdaus ML, Norisuye K, Nakagawa Y, Nakatsuka S, Sohrin Y (2008) Dissolved and labile particulate Zr, Hf, Nb, Ta, Mo, and W in the western north Pacific Ocean. J Oceanogr 64:247–257

    Article  Google Scholar 

  • Fujinaga T, Sohrin Y, Ishiki K (eds) (2005) Chemistry of the oceans and lakes: studies using trace elements. Kyoto University Press, Kyoto, 560 p (in Japanese)

  • Gaillardet J, Viers J, Dupre B (2003) Trace elements in river water. In: Drever JI (ed) Water, weathering, and soils, vol 5, Treatise on geochemistry. Elsevier, Oxford, pp 225–272

    Google Scholar 

  • Goldberg S (1985) Chemical modeling of anion competition on goethite using the constant capacitance model. Soil Sci Soc Am 49:851–856

    Article  Google Scholar 

  • Goldberg S (1986) Chemical modeling of arsenate adsorption on aluminum and iron oxide minerals. Soil Sci Soc Am J 50:1154–1157

    Article  Google Scholar 

  • Goldberg ED, Arrhenius GOS (1958) Chemistry of Pacific pelagic sediments. Geochim Cosmochim Acta 13:153–212

    Article  Google Scholar 

  • Haraguchi H, Itoh A, Kimata C, Miwa H (1998) Speciation of yttrium and lanthanides in natural water by inductively coupled plasma mass spectrometry after preconcentration by ultrafiltration and with a chelating resin. Analyst 123:773–778

    Article  Google Scholar 

  • Holm E (1981) Release of 237-Np to the environment. In: Impacts of radionuclide release into the marine environment. IAEA

  • Honeyman BD, Santschi PH (1989) A Brownian-pumping model for oceanic trace metal scavenging: evidence from thorium isotopes. J Mar Res 47:951–992

    Article  Google Scholar 

  • Honeyman BD, Santschi PH (1991) Coupling adsorption and particle aggregation: laboratory studies of “colloidal pumping” using 56Fe-labled hematite. Environ Sci Technol 25:1739–1747

    Article  Google Scholar 

  • IAEA (1985) Sediment Kd’s and concentration factors for radionuclides in the marine environment. Technical report series #110, IAEA

  • James RO, Healy TW (1972) Adsorption of hydrolysable metal ions at the oxide-water interface III. A thermodynamic model of adsorption. J Colloid Interface Sci 40:65–81

    Article  Google Scholar 

  • Kishida K, Sohrina Y, Okamuraa K, Ishibashi J (2004) Tungsten enriched in submarine hydrothermal fluids. Earth Planet Sci Lett 222:819–827

    Article  Google Scholar 

  • Klein EM (2004) Geochemistry of the igneous oceanic crust. In: Rudnick RL (ed) Crust, vol 3, Treatise on geochemistry. Elsevier, Oxford

    Google Scholar 

  • Koschinsky A, Hein JR (2003) Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation. Mar Geol 198:331–351

    Article  Google Scholar 

  • Li YH (1981) Ultimate removal mechanisms of elements from the ocean. Geochim Cosmochim Acta 45:1659–1664

    Article  Google Scholar 

  • Li YH (1982) Ultimate removal mechanisms of elements from the ocean (Reply to a comment by Whitfield and Turner). Geochim Cosmochim Acta 46:1993–1995

    Article  Google Scholar 

  • Li YH (1984) Why are the chemical compositions of living organisms so similar? Schweiz Z Hydrol 46(2):176–184

    Article  Google Scholar 

  • Li YH (1991) Distribution patterns of the elements in the ocean: a synthesis. Geochim Cosmochim Acta 55:3223–3240

    Article  Google Scholar 

  • Li YH (2000) A Compendium of geochemistry: from solar nebula to the human brain. Princeton University Press, New Jersey

    Google Scholar 

  • Li YH (2006) Are all creatures created equal? (Geochemistry of biosphere). Trans Res Institute Oceanochem 19:106–112

    Google Scholar 

  • Li YH, Schoonmaker J (2003) Chemical composition and mineralogy of marine sediments. In: Mackenzie FT (ed) Sediments, diagenesis, dedimentary rocks, vol 7, Treatise on geochemistry. Elsevier, Oxford, pp 1–35

    Google Scholar 

  • Li YH, Takamatsu T, Sohrin Y (2007) Geochemistry of Lake Biwa sediments revisited. Limnology 8:321–330

    Article  Google Scholar 

  • Li YH, Sohrin Y, Takamatsu T (2010) Lake Biwa and the ocean: geochemical similarity and difference. Limnology (in press)

  • Lide DR (ed) (2008) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  • Michard A, Albarebe F (1986) The REE content of some hydrothermal fluids. Chem Geol 55:51–60

    Article  Google Scholar 

  • Mito S, Sohrin Y, Norisuye K, Matsui M, Hasegawa H, Maruo M, Tsuchiya M, Kawashima M (2004) The budget of dissolved trace metals in Lake Biwa, Japan. Limnology 5:7–16

    Article  Google Scholar 

  • Orians KJ, Merrin CL (2001) Refractory metals. In: Steele JH, Thorpe SA, Turekian KK (eds) Encyclopedia of ocean sciences vol. 4. Academic Press, NY, pp 2387–2398

    Chapter  Google Scholar 

  • Peucker-Ehrenbrink B, Jahn BM (2001) Rhenium-osmium isotope systematics and platinum group element concentrations: loess and the upper continental crust. Geochem Geophys Geosyst 2: 2001GC000172

  • Ravizza GE (2001) Platinum group elements and their isotopes in the ocean. In: Steele JH, Thorpe SA, Turekian KK (eds) Encyclopedia of ocean sciences vol. 4. Academic Press, NY, pp 2208–2216

    Chapter  Google Scholar 

  • Santschi PH, Amdurer M, Adler D, O’Hara P, Li YH, Doering P (1987) Relative mobility of radioactive trace elements across the sediment-water interface in the MERL model ecosystems of Narragansett Bay. J Mar Res 45:1007–1048

    Article  Google Scholar 

  • Santschi PH, Bollhalder S, Farrenkothen K, Lueck A, Zing S, Sturm M (1988) Chernobyl radionuclides in the environment: tracers for the tight coupling of atmospheric, terrestrial and aquatic geochemical processes. Environ Sci Technol 22:510–516

    Article  Google Scholar 

  • Schindler PW (1975) Removal of trace metals from the oceans: a zero order model. Thalassia Jugosl 11:101–111

    Google Scholar 

  • Schindler PW, Stumm W (1987) The surface chemistry of oxides, hydroxides, and oxide minerals. In: Stumm W (ed) Aquatic surface chemistry. Wiley, New York, pp 83–110

    Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Stumm W, Huang CP, Jenkins SR (1970) Specific chemical interaction affecting the stability of dispersed system. Croat Chem Acta 42:223–245

    Google Scholar 

  • Takamatsu T (ed) (1985) Limnological and environmental studies of elements in the sediment of Lake Biwa. Research Report #75, National Institute for Environmental Studies, Japan, 129 pp

  • Takamatsu T, Kawashima M, Koyama M (1985a) The role of Mn+2 - rich hydrous manganese oxide in the accumulation of arsenic in Lake sediments. Water Res 20:471–475

    Google Scholar 

  • Takamatsu T, Kawashima M, Matsushita R, Koyama M (1985b) General distribution profiles of thirty-six elements in sediments and manganese concretions of Lake Biwa. Jpn J Limnol 46:115–127

    Article  Google Scholar 

  • Takamatsu T, Kawashima M, Takada J, Matsushita R (1993) Characteristics in elemental composition of ferromanganese concretions from Lake Biwa. Jpn J Limnol 54:281–291

    Article  Google Scholar 

  • Takebe M (2005) Carriers of rare earth elements in Pacific deep-sea sediments. J Geol 113:201–215

    Article  Google Scholar 

  • Taylor SR, McLennan SM, McCulloch MT (1983) Geochemistry of loess, continental crust composition and crustal model ages. Geochim Cosmochim Acta 47:1897–1906

    Article  Google Scholar 

  • Teraoka H, Kobayashi J (1980) Concentrations of 21 metals in the suspended solids collected from the principal 166 rivers and 3 lakes in Japan. Geochemical J 14:203–226

    Google Scholar 

  • Tseng CM, Lamborg C, Fitzgerald WF, Engstrom DR (2004) Cycling of dissolved mercury in Arctic Alaskan lakes. Geochim Cosmochim Acta 68:1173–1184

    Article  Google Scholar 

  • Viers J, Dupre B, Polve M, Schott J, Dandurand JL, Braun JJ (1997) Chemical weathering in the drainage basin of a tropical watershed (Nsimi-Zoetele site, Cameroon) comparison between organic-poor and organic-rich waters. Chem Geol 140:181–206

    Article  Google Scholar 

  • Viers J, Dupré B, Gaillardet J (2009) Chemical composition of suspended sediments in world rivers: new insights from a new database. Sci Total Environ 407:853–868

    Article  Google Scholar 

  • Von Damm KL (1995) Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In: Humphris SF, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems

  • Von Damm K, Edmond JM, Grant B, Measures CI, Walden B, Weiss RF (1985) Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise. Geochim Cosmochim Acta 49:2197–2220

    Article  Google Scholar 

  • Wen LS, Santschi PH, Gill G, Lehman R, Paternostro C (1997) Colloidal and particulate silver in river and estuarine waters of Texas. Environ Sci Technol 31:723–731

    Article  Google Scholar 

  • Wen LS, Santschi P, Gill G, Tang D (2002) Silver concentrations in Colorado USA watersheds using improved methodology. Environ Toxico Chem 21(1):2040–2051

    Article  Google Scholar 

  • Zhu Y, Hattori R, Rahmi D, Okuda S, Itoh A, Fujimori E, Umemura T, Haraguchi H (2005) Fractional distribution of trace metals in surface water of Lake Biwa as studied by ultrafiltration and ICP-MS. Bull Chem Soc Jpn 78:1970–1976

    Article  Google Scholar 

Download references

Acknowledgments

The Foundation of the Research Institute for Oceanochemistry (Kyoto, Japan) sponsored this work. Support from the Hanse Institute for Advanced Study, Delmenthorst, Geremany, during my sabbatical year there was essential. Comments from Professors Y Sohrin, F Mackenzie, J Gaillardet, and P Santschi were most helpful. Editorial assistance by May Izumi is acknowledged. This work is in part supported by NOAA/OAR/OGP Grant GC02-386. SOEST contribution # 8068.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Hui Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YH. Partition of Elements Between Solid and Liquid Phases in Aquatic Environments. Aquat Geochem 17, 697–725 (2011). https://doi.org/10.1007/s10498-011-9121-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-011-9121-8

Keywords

Navigation