Skip to main content

Hydrochemical Groundwater Evolution in the Bunter Sandstone Sequence of the Odenwald Mountain Range, Germany: A Laboratory and Field Study

Abstract

Field and laboratory investigations were performed to identify the principal mechanisms of the hydrochemical groundwater evolution among low mineralised groundwater in the Triassic Bunter sandstone aquifer of the Odenwald low mountain range, central Germany. Hydrochemical composition comprises low pH, SO4-rich shallow groundwaters issued by springs (Ca-Mg-SO4-type) grading to SO4-poor deep groundwaters with near-neutral pH (Ca-HCO3-type). Batch experiments of the original rock were run to determine primary mineral alteration reactions and the origin of dissolved ions. Principal experimental reactions comprise the decomposition of anorthite, K-feldspar, biotite and jarosite as mineral components of the original sandstone rock and the formation of clay minerals of the smectite group (Ca-montmorillonite, beidellite), and iron hydroxides as secondary minerals. Mobilisation of fluid inclusion in quartz grains contributes to Na and Cl concentrations in the leachates. The evolution of deep groundwater circulation proceeds by mineral alteration reactions calculated by the inverse modelling of both primary and secondary minerals to produce low-T mineral phases. The dissolution of K-feldspar converts Ca-montmorillonite to illite (illitisation). The formation of Na-beidellite correlates with decreasing concentration of Na in solution. Mineral reactions further proceed to the formation of kaolinite as stable mineral phase. As indicated by modelled adsorption curves, the decrease of SO4 concentrations during groundwater evolution relates to the adsorption of SO4 on iron hydroxides. The leaching of calcite indicated for individual groundwaters relates to the distribution of loess in the appropriate catchment areas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema Publishers, Rotterdam, 649 pp

    Book  Google Scholar 

  • Backhaus E, Schwarz S (2003) Ein Sammelprofil des Buntsandsteins und Zechsteins im mittleren Odenwald anhand von Bohrungen und Gamma-Logs [An accumulative profile of the Bundsandstein and Zechstein rock formation on the basis of drillings and Gamma-logs]. Geol Jb Hessen 130:91–107

    Google Scholar 

  • Backhaus E, Bähr R, Binding M (2002) Faziesbild und stratigraphische Einstufung des Mittleren und Oberen Buntsandsteins am unteren Neckar (TK 25, Blatt 6620 Mosbach) [Facies and stratigraphic classification of the Middle and Upper Bunter sandstone along the lower Neckar (TK 25, sheet 6620 Mosbach)]. Geol Jb Hessen 129:79–101

    Google Scholar 

  • Balázs A (1998) 14 Jahre Niederschlagsdeposition in Hessischen Waldgebieten—Ergebnisse von den Meßstationen der Waldökosystemstudie Hessen [14 years precipitation deposition in Hessian forests—results of the gauging stations of the forest-ecosystem study in Hessen]. Forschungsberichte HLFWW 25, p 129

  • Balázs A, Brechtel HM, Führer H-W (1992) Saure atmosphärische Niederschlagsdeposition und ihre Auswirkungen auf die chemische Qualität von Quellwasser im Hessischen Buntsandstein-Mittelgebirge [Acidic precipitation deposition and its influences on the chemical quality of forest spring water in the Hessian highlands of Bunter sandstone]. Forstwissenschaftliches Centralblatt, Hess. Forstl Versuchsanst 111(3):156–168

    Google Scholar 

  • Ball JW, Nordstrom DK (1991) WATEQ4F: user’s manual with revised thermodynamic data base and test cases for calculating speciation of major, trace, and redox elements in natural waters. US Geological Survey Open-File Report 90–129, 185 p

  • Berthold G, Toussaint B (1998) Grundwasserbeschaffenheit in Hessen, Auswertung von Grund- und Rohwasseranalysen bis 1997 [Groundwater quality in Hessen, report on groundwater and raw water analysis data until 1997]. Hess L-Anst Umwelt 250:102

    Google Scholar 

  • Coetsiers M, Walraevens K (2008) The neogene aquifer, Flanders, Belgium. In: Edmunds WM, Shand P (eds) Natural groundwater quality. Blackwell Publishing, United Kingdom, pp 263–286

    Chapter  Google Scholar 

  • Dersch-Hansmann M, Hug N (2004) Oberer und Mittlerer Buntsandstein im Untergrund des Dieburger Beckens [Upper and middle Bunter sandstone in the bedrock of the Dieburg basin]. Geol Jb Hessen 131:81–95

    Google Scholar 

  • Drever JI (1997) Adsorption. In: Drever JI (ed) The geochemistry of natural waters, 3rd edn. Prentice Hall, New Jersey, pp 85–105

    Google Scholar 

  • Dürbaum H-J, Matthess G, Rambow D (1969) Untersuchungen der Gesteins- und Gebirgsdurchlässigkeit des Buntsandsteins in Nordhessen [Investigations of the matrix and rock permeability of the Bunter sandstone in northern Hesse]. Notizbl Hess L-Amt Bodenforsch 97:258–274

    Google Scholar 

  • Dzombak DA, Morel FMM (1990) Surface complexation modelling - hydrous ferric oxide. John Wiley, New York, 393 pp

  • Friedrich R (2007) Grundwassercharakterisierung mit Umwelttracern: Erkundung des Grundwassers der Odenwald-Region sowie Implementierung eines neuen Edelgas-Massenspektrometersystems [Characterisation of groundwater by environmental tracers: Groundwater investigation in the region of the Odenwald and implementation of a new system of noble gas mass spectrometry]. PhD Thesis, University of Heidelberg, 272 pp

  • Gaboriaud F, Erhardt J-J (2003) Effects of different crystal faces on the surface charge of colloidal goethite (α-FeOOH) particles: an experimental and modeling study. Geochim Cosmochim Acta 67(5):967–983

    Article  Google Scholar 

  • Garrels RM (1984) Montmorillonite/illite stability diagrams. Clays Clay Min 32(3):161–166

    Article  Google Scholar 

  • Geyer G (2002) Buntsandstein [Bunter sandstone]. In: Geyer G (ed) Geologie von Unterfranken und angrenzenden Regionen [Geology of lower Frankonia and adjacent regions]. Klett-Perthes, Gotha and Stuttgart, Germany, pp 102–152

    Google Scholar 

  • Heim D (1990) Tone und Tonminerale [Clays and clay minerals]. Enke, Stuttgart, 157 pp

    Google Scholar 

  • Herron MM (1988) Geochemical classification of terrigenous sands and shales from core or log data. J Sediment Res 58:820–829

    Google Scholar 

  • Hingston FJ, Posner AM, Quirk PJ (1972) Anion adsorption by goethite and gibbsite. I. The role of the proton in determining adsorption envelopes. J Soil Sci 23(2):177–192

    Article  Google Scholar 

  • Hölting B (1978) Die Buntsandsteingebiete des Hessischen Berglandes [The areas of Bunter sandstone in the Hessian highlands]. In: Keller R (ed) Hydrologischer Atlas der Bundesrepublik Deutschland [Hydrological atlas of the federal republic of Germany]. Deutsche Forschungsgem, Bonn

    Google Scholar 

  • Huneau F, Travi Y (2008) The miocene aquifer of Valréas, France. In: Edmunds WM, Shand P (eds) Natural groundwater quality. Blackwell Publishing, United Kingdom, pp 287–305

    Chapter  Google Scholar 

  • Karrenberg H (1981) Buntsandstein in Deutschland [Bunter sandstone in Germany]. In: Karreberg H (ed) Hydrogeologie nichtverkarstungsfähiger Festgesteine [Hydrogeology of non-karstic bedrock]. Springer, Wien, pp 174–180

    Google Scholar 

  • Lasaga AC (1984) Chemical kinetics of water–rock interactions. J Geophys Res 89(B6):4009–4025

    Article  Google Scholar 

  • Liu X, Millero FJ (2000) Iron hydroxide solubility and morphology as examined by ESEM. Preliminary report, preprints of extended abstracts. Am Chem Soc 40(2):532–534

    Google Scholar 

  • Logan J (1964) Estimating transmissibility from routine production tests of water wells. Ground Water 2:35–37

    Article  Google Scholar 

  • Matthess G (1970) Beziehungen zwischen geologischem Bau und Grundwasserbewegung in Festgesteinen [Relation of geology and groundwater flow in fissured rock aquifers]. Abh Geol L-Amt Bodenforsch 58:109

    Google Scholar 

  • Meisl S (1965) Petrographie der Buntsandsteinsedimente [Petrography of the Bunter sediments]. In: Kupfahl H-G (ed) Erläuterungen zur Geologischen Karte 5323 [Annotations on the geological map 5323]. Hess L-Amt Bodenforsch, Wiesbaden, pp 105–122

    Google Scholar 

  • Möderl T (1996) Mineralogische und geochemische Untersuchungen an zwei Bohrkernprofilen im Buntsandstein [Mineralogical and geochemical investigations of two drilling core profiles of the Bunter sequence]. Erlanger Beitr Petr Min 6:1–22

    Google Scholar 

  • Moss PD, Edmunds WM (1992) Processes controlling acid attenuation in the unsaturated zone of a Triassic sandstone aquifer (U.K.), in the absence of carbonate minerals. Appl Geochem 6:573–583

    Google Scholar 

  • Mullis J, Stadler HA (1986) Salt-poor and salt-rich fluid inclusions in quartz from two boreholes in Northern Switzerland. Chem Geol 61:269–272

    Google Scholar 

  • Parkhurst DL (1995) User’s guide to PHREEQC: a computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations. US Geological Survey, Water-Resources Investigations Report 95-4227, 143 p

  • Quadflieg A (1990) Zur Geohydrochemie der Kluftgrundwasserleiter des nord- und osthessischen Buntsandsteingebietes und deren Beeinflussung durch saure Depositionen [About the geohydrochemistry of fissured rock quifers of the northern and eastern Hessian Bunter sequence and the influence of acidic precipitation]. Geol Abh Hessen 90:110

    Google Scholar 

  • Rosenberg F (1999) Geochemie [Geochemistry]. In: Rosenberg F et al (eds) Erläuterungen zur Geologischen Karte 4923 [Annotations on the geological map 4923]. Hess L-Amt Bodenforsch, Wiesbaden, pp 274–292

    Google Scholar 

  • Shand P, Tyler-Whittle R, Morton M, Simpson E, Lawrence AR, Pacey J, Hargreaves R (2002) Baseline report series 1: The triassic sandstones of the Vale of York. British Geol Surv Comm Report CR/02/102 N

  • Singer A, Stoffers P (1980) Clay mineral diagenesis in two East African lake sediments. Clay Min 15:291–307

    Article  Google Scholar 

  • Singh B, Wilson MJ, McHardy WJ, Fraser AR, Merrington G (1999) Mineralogy and chemistry of ochre sediments from an acid mine drainage near a disused mine in Cornwall, UK. Clay Min 34:301–317

    Article  Google Scholar 

  • Stober I, Bucher K (1999) Deep groundwater in the crystalline basement of the Black Forest region. Appl Geochem 14:237–254

    Article  Google Scholar 

  • Stober I, Bucher K (2007) Hydraulic properties of the crystalline basement. Hydrogeol J 15(2):213–224

    Article  Google Scholar 

  • Stober I, Zhu Y, Bucher K (2002) Water–rock reactions in a barite–fluorite underground mine, Black Forest (Germany). In: Stober I, Bucher K (eds) Water–rock interaction. Kluwer Academic Publishers, The Netherlands, pp 171–187

    Google Scholar 

  • Strayle G, Stober I, Schloz W (1994) Ergiebigkeitsuntersuchungen in Festgesteinsaquiferen [Yield investigations in fissured rock aquifers]. Geol L-Amt Baden-Wuerttemberg, Informationen 6/94, 114 pp

  • Van Camp M, Walraevens K (2008) Identifying and interpreting baseline trends. In: Edmunds WM, Shand P (eds) Natural groundwater quality. Blackwell Publishing, United Kingdom, pp 131–154

    Chapter  Google Scholar 

  • Vogel C (1994) Chemische Analysen [Chemical analysis]. In: Vogel C (ed) Erläuterungen zur Geologischen Karte 6220 [Annotations on the geological map 6220]. Hess L-Amt Bodenforsch, Wiesbaden, pp 33–38

    Google Scholar 

  • White AF, Bullen TD, Vivit DV, Schulz MS, Clow DW (1999) The role of disseminated calcite in the chemical weathering of granitoid rocks. Geochim Cosmochim Acta 63:1939–1953

    Article  Google Scholar 

  • White AF, Schulz MS, Lowenstern JB, Vivit DV, Bullen TD (2005) The ubiquitous nature of accessory calcite in granitoid rocks: implications for weathering, solute evolution, and petrogenesis. Geochim Cosmochim Acta 69:1455–1471

    Article  Google Scholar 

  • Yardley BWD, Banks DA, Davies GR, McCaig AM, Grant NT (1989) Chemistry and isotopic composition of fluid from a deep thrust zone, central Pyrenees. In: Miles JM (ed) Water–rock interaction symposium, Rotterdam pp, 789–792

  • Yardley BWD, Banks DA, Munz IA (1992) Halogen compositions of fluid inclusions as tracers of crustal fluid behaviour. In: Kharaka YK, Meast P (eds) Water–rock interaction symposium, Rotterdam, pp 1137–1140

  • Zhang GY, Peak D (2007) Studies of Cd(II)-sulfate interactions at the goethite–water interface by ATR-FTIR spectroscopy. Geochim Cosmochim Acta 71:2158–2169

    Article  Google Scholar 

  • Zhu Y (2001) Hydrogeologie und Gestein-Wasser Reaktion in der Grube Clara (Schwarzwald) [Hydrogeology and rock–water reactions in the Grube Clara, Black Forest]. Freiburger Geowiss Beitr 15, 145 pp

Download references

Acknowledgements

We are grateful to all of our colleagues at the University of Freiburg for their support during the lab experiments and sample conditioning, with special regard to Sigrid Hirth-Walther, Melanie Schrage, Dagmar Flemming and Isolde Schmidt at the University of Freiburg. For exciting discussion, we would like to thank Ulrike Seelig. The manuscript benefited greatly from the thorough reviews by Dr. Karl-Heinz Köppen and Achim Justen at Wasser und Boden. Finally, we acknowledge the two anonymous reviewers for their critique and suggestions and Dieke Postma as the associate editor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Ludwig.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ludwig, F., Stober, I. & Bucher, K. Hydrochemical Groundwater Evolution in the Bunter Sandstone Sequence of the Odenwald Mountain Range, Germany: A Laboratory and Field Study. Aquat Geochem 17, 165–193 (2011). https://doi.org/10.1007/s10498-010-9118-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-010-9118-8

Keywords

  • Hydrochemical groundwater evolution
  • Mineral alteration reactions
  • Sulfate adsorption
  • Illitisation
  • Triassic Bunter sandstone sequence
  • Germany