Skip to main content

Salt Waters of the Northern Apennine Foredeep Basin (Italy): Origin and Evolution

Abstract

The salt waters from the Emilia-Romagna sector of the Northern Apennine Foredeep have been investigated using major and trace element and stable isotope (δ2H, δ18O, δ37Cl, δ81Br and 87Sr/86Sr ratio). Ca, Mg, Na, K, Sr, Li, B, I, Br and SO4 vs. Cl diagrams suggest the subaerial evaporation of seawater beyond gypsum and before halite precipitation as primary process to explain the brine’s salinity, whereas saline to brackish waters were formed by mixing of evaporated seawater and water of meteoric origin. A diagenetic end-member may be a third component for mud volcanoes and some brackish waters. Salinization by dissolution of (Triassic) evaporites has been detected only in samples from the Tuscan side of the Apennines and/or interacting with the Tuscan Nappe. In comparison with the seawater evaporation path, Ca–Sr enrichment and Na–K–Mg depletion of the foredeep waters reveal the presence of secondary processes such as dolomitization–chloritization, zeolitization–albitization and illitization. Sulfate concentration, formerly buffered by gypsum-anhydrite deposition, is heavily lowered by bacterial and locally by thermochemical reduction during burial diagenesis. From an isotopic point of view, data of the water molecule confirm mixing between seawater and meteoric end-members. Local 18O-shift up to +11‰ at Salsomaggiore is related to water–rock interaction at high temperature (≈150°C) as confirmed by chemical (Mg, Li, Ca distribution) and isotopic (SO4–H2O) geothermometers. 37Cl/35Cl and 81Br/79Br ratios corroborate the marine origin of the brines and evidence the diffusion of halogens from the deepest and most saline aquifers toward the surface. The 87Sr/86Sr ratio suggests a Miocene origin of Sr and rule out the hypothesis of a Triassic provenance of the dissolved components for the analyzed waters issuing from the Emilia-Romagna sector of the foredeep. Waters issuing from the Tuscan side of the Apennines and from the Marche sector of the foredeep show higher 87Sr/86Sr ratios because of the interaction with siliciclastic rocks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • AGIP Mineraria (1959) I giacimenti gassiferi dell’Europa Occidentale. Accademia Nazionale dei Lincei and ENI, Roma

    Google Scholar 

  • Apha-Awwa-Wef (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, American Water Works Association, Water Environment Federation, USA

    Google Scholar 

  • Appelo CAJ (2002) Calculating the fractionation of isotopes in hydrochemical (transport) processes with PHREEQC-2. In: Schulz HD, Hadeler A (eds) Geochemical processes in soil and groundwater. GeoProc, Wiley-VCH, Weinheim, pp 383–398

    Google Scholar 

  • Argnani A, Ricci Lucchi F (2001) Tertiary silicoclastic turbidite systems of the Northern Apennine. In: Vai GB, Martini IP (eds) Anatomy of an orogen: the apennines and adjacent mediterranean basins. Kluwer, Dordrecht, pp 327–349

    Google Scholar 

  • Artoni A, Papani G, Rizzini F, Calderoni M, Bernini M, Argnani A, Roveri M, Rossi M, Rogledi S, Gennari R (2004) The Salsomaggiore structure (Northwestern Apennine foothills, Italy): a Messinian mountain front shaped by mass-wasting products. Geo Acta 3:107–127

    Google Scholar 

  • Artoni A, Rizzini F, Roveri M, Gennari R, Manzi V, Papani G, Bernini M (2007) Tectonic and Climatic Controls on Sedimentation in Late Miocene Cortemaggiore Wedge-Top Basin (Northwestern Apennines, Italy). In: Lacombe O, Lavé J, Roure F, Vergés J (eds) Thrust belts and foreland basins—from fold kinematics to hydrocarbon systems. Frontiers In Earth Sciences. Springer, Berlin, pp 431–456

    Google Scholar 

  • Artusi GC, De Marchi A, Marenghi I, Tagliavini S, Zanzucchi G (1977) The mineral waters of the Parma province. Origin composition and classification. Università degli Studi di Parma, Italy

    Google Scholar 

  • Bein A, Dutton AR (1993) Origin, distribution, and movement of brine in the Permian Basin (U.S.A.): a model for displacement of connate brine. Geol Soc Am Bull 105:695–707

    Article  Google Scholar 

  • Bellanca A, Neri R (1986) Evaporite carbonate cycles of the Messinian, Sicily: stable isotopes, mineralogy, textural features, and environmental implications. J Sediment Petrol 56:614–621

    Google Scholar 

  • Bellia S, Censi P (1985) Il Messiniano evaporitico della Sicilia Orientale: l’ambiente di formazione dei gessi di Calatabiano (CT) sulla base di evidenza tessiturali e geochimica-isotopiche. Miner Petrogr Acta 29:61–74

    Google Scholar 

  • Bencini A, Duchi V, Martini M (1977) Geochemistry of thermal springs of Tuscany (Italy). Chem Geol 19:229–252

    Article  Google Scholar 

  • Bonini M (2007) Interrelations of mud volcanism, fluid venting, and thrust-anticline folding: Examples from the external northern Apennines (Emilia-Romagna, Italy). J Geophys Res 112:B08413. doi:10.1029/2006JB004859

    Article  Google Scholar 

  • Borgia GC, Elmi C, Ricchiuto T (1988) Correlation by genetic properties of the shallow gas seepages in the Emilian Apennines (Northern Italy), in Advances in Organic Geochemistry 1987. Org Geochem 13:319–324

    Article  Google Scholar 

  • Boschetti T (2003) Studio geochimico e geochimico-isotopico di acque a composizione estrema e termali dell’Appennino Settentrionale. Dissertation, University of Parma, Italy

  • Boschetti T, Venturelli G, Toscani L, Barbieri M, Mucchino C (2005) The Bagni di Lucca thermal waters (Tuscany, Italy): an example of Ca-SO4 waters with high Na/Cl and low Ca/SO4 ratios. J Hydrol 307(1–4):270–293

    Article  Google Scholar 

  • Boschetti T, Cortecci C, Toscani L, Iacumin P (2010) Sulfur and oxygen isotope compositions of Upper Triassic sulfates from Northern Apennines (Italy): palaeogeographic and hydrogeochemical implications. Geologica Acta (in press)

  • Böttcher ME, Brumsack HJ, De Lange GJ (1998) Sulfate reduction and related stable isotope (34S, 18O) variations in interstitial waters of the eastern Mediterranean. In: Robertson AHF, Emeis KC, Richter C, Camerlenghi A (eds) Proceedings of the ocean drilling program, scientific results 160, College Station, TX, pp 365–373

  • Böttcher ME, Bernasconi S, Brumsack HJ (1999) Carbon, sulfur and oxygen isotope geochemistry in interstitial waters from the western Mediterranean. In: Zahn R, Comas MC, Klaus A (eds) Proceedings of the Ocean Drilling Program, Scientific Results 161, College Station, TX, pp 413–422

  • Brunner B, Bernasconi S, Kleikemper J, Schroth MH (2005) A model for oxygen and sulphur isotope fractionation in sulfate during bacterial sulfate reduction processes. Geochim Cosmochim Acta 20:4733–4785

    Google Scholar 

  • Capozzi R, Picotti V (2002) Fluid migration and origin of a mud volcano in the Northern Apennines (Italy): the role of deeply rooted normal faults. Terra Nova 14:363–370

    Article  Google Scholar 

  • Carpenter AB (1978) Origin and chemical evolution of brines in sedimentary basins. Oklah Geol Surv Circ 79:60–77

    Google Scholar 

  • Cataldi R, Mongelli F, Squarci P, Taffi L, Zito G, Calore C (1995) Geothermal ranking of Italian territory. Geothermics 24:115–129

    Article  Google Scholar 

  • Censi P (1984) Isotopic composition of water of crystallization of Sicilian selenitic gypsum crystals: interpretation of observed variations. Miner Petrogr Acta 28:139–153

    Google Scholar 

  • Censi P (1986) Frazionamento isotopico dell’ossigeno nell’acqua di cristallizzazione dei gessi e kainite di origine evaporitica. Rend Soc It Min Petr 41:273–279

    Google Scholar 

  • Clark I, Fritz P (1997) Environmental Isotopes in hydrogeology. Lewis Publications, Boca Raton

    Google Scholar 

  • Conti S, Artoni A, Piola G (2007) Seep-carbonates in a thrust-related anticline at the leading edge of an orogenic wedge: The case of the middle–late Miocene Salsomaggiore Ridge (Northern Apennines, Italy). Sediment Geol 199:233–251

    Article  Google Scholar 

  • Coplen TB, Hanshaw BB (1973) Ultrafiltration by a compacted clay membrane–I. Oxygen and hydrogen isotopic fractionation. Geochim Cosmochim Acta 37:2295–2310

    Article  Google Scholar 

  • Cortecci G, Orlandi P (1975) Analisi isotopica di minerali solfatici associti a zolfo, solfuri e calcare. Rend Soc It Min Petr 31:379–398

    Google Scholar 

  • Cortecci G, Dinelli E, Boschetti T, Arbizzani P, Pompilio L, Mussi M (2008) The Serchio River catchment, northern Tuscany: geochemistry of stream waters and sediments, and isotopic composition of dissolved sulfate. Appl Geochem 23:1513–1543

    Article  Google Scholar 

  • Dählmann A, de Lange GJ (2003) Fluid-sediment interactions at Eastern Mediterranean mud volcanoes: a stable isotope study from ODP Leg 160. Earth Planet Sc Lett 212:377–391

    Article  Google Scholar 

  • Davisson ML, Criss RE (1996) Na-Ca-Cl relations in basinal fluids. Geochim Cosmochim Acta 60:2743–2752

    Article  Google Scholar 

  • Dolenec T, Pezdic J, Herlec U (1996) Stable isotope study of the Adriatic Sea. Acta Geol Hung 39 (Isotope Workshop III Suppl):35-38

  • Drever JI (1997) The geochemistry of natural waters: surface and groundwater environments, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Duchi V, Venturelli G, Boccasavia I, Bonicolini F, Ferrari C, Poli D (2005) Studio geochimico dei fluidi dell’Appennino Tosco-Emiliano-Romagnolo. Boll Soc Geol It 124:475–491

    Google Scholar 

  • Eggenkamp HGM (1994) The geochemistry of chlorine isotopes. Ph.D. Thesis. University of Utrecht, The Netherlands

  • Eggenkamp HGM, Coleman ML (2009) The effect of aqueous diffusion on the fractionation of chlorine and bromine stable isotopes. Geochim Cosmochim Acta 73:3539–3548

    Article  Google Scholar 

  • El Mugammar H, Shouakar-Stash O (2008) Strontium isotope analysis. Technical Procedure, Environmental Isotope Laboratory, Department of Earth and Environmental Sciences, University of Waterloo, Waterloo

    Google Scholar 

  • Emilia-Romagna R, ENI – AGIP (1998) Riserve idriche sotterranee della Regione Emilia-Romagna. In: Di Dio G (ed.) S.EL.CA, Firenze, pp 120

  • Epstein S, Mayeda T (1953) Variations of 18O/16O ratio in natural waters. Geochim Cosmochim Acta 4:213–224

    Article  Google Scholar 

  • Fontes JC, Matray JM (1993) Geochemistry and origin of formation brines from the Paris Basin, France. 1. Brines associated with Triassic salts. Chem Geol 109:149–175

    Article  Google Scholar 

  • Fritz P, Basharmal GM, Drimmie RJ, Ibsen J, Qureshi RM (1989) Oxygen isotope exchange between sulphate and water during bacterial reduction of sulphate. Chem Geol (Isot Geosc Sec) 79:99–105

    Article  Google Scholar 

  • Galley MR, Miller AI, Atherley JF, Mohn M (1972) GS process-physical properties. Chalk River, Ontario, Canada, Atomic Energy of Canada Limited, AECL-4225

  • Gat JR, Carmi I (1970) Evolution in the isotopic composition of atmospheric waters in the Mediterranean Sea area. J Geophys Res 75:3039–3048

    Article  Google Scholar 

  • Gavrieli I, Starinsky A, Spiro B, Ainzenshtat Z, Nielsen H (1995) Mechanisms of sulfate removal from subsurface calcium chloride brines; Heletz-Kokhav oilfields, Israel. Geochim Cosmochim Acta 59:3525–3533

    Article  Google Scholar 

  • Gran G (1952) Determination of the equivalence point in in the potentiometric titrations. Analyst 77:661–671

    Article  Google Scholar 

  • Hanor JS (1987) Origin and migration of subsurface sedimentary brines. SEPM Short Course No. 21, U.S.A

  • Horita J (2009) Isotopic evolution of saline lakes in the low-latitude and polar regions. Aquat Geochem 15:43–69

    Article  Google Scholar 

  • Horita J, Wesolowski DJ (1994) Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochim Cosmochim Acta 58:3425–3437

    Article  Google Scholar 

  • Horita J, Cole DR, Wesolowski DJ (1993) The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: II. Vapor-liquid water equilibration of mixed salt solutions from 50 to 100°C and geochemical implications. Geochim Cosmochim Acta 57:4703–4711

    Article  Google Scholar 

  • Hutcheon I (2002) Principles of diagenesis and what drives mineral change. In: Kyser K (ed) Fluids and basin evolution, short course series, vol 28. Mineralogical Association of Canada, Ottawa, pp 93–114

    Google Scholar 

  • Hyeong K, Capuano RM (2001) Ca/Mg of brines in Miocene/Oligocene clastic sediments of the Texas Gulf Coast: buffering by calcite/disordered dolomite equilibria. Geochim Cosmochim Acta 65:3065–3080

    Article  Google Scholar 

  • Hyeong K, Capuano RM (2004) Hydrogen isotope fractionation factor for mixed-layer illite/smectite at 60° to 150°C: new data from the northeast Texas Gulf Coast. Geochim Cosmochim Acta 68:1529–1543

    Article  Google Scholar 

  • Iacumin P, Venturelli G, Burroni B, Toscani L, Selmo E (2007) The S. Andrea Bagni waters (Province of Parma): origin, mixing with high-salinity waters and inferences on climatic microvariations. Mem Descrittive Carta Geol Italia 76:219–228

    Google Scholar 

  • Iacumin P, Venturelli G, Selmo E (2009) Isotopic features of rivers and groundwater of the Parma Province (Northern Italy) and their relationships with precipitation. J Geochem Expl 102:56–62

    Article  Google Scholar 

  • Kharaka YK, Mariner RH (1989) Chemical geothermometers and their application to formation waters from sedimentary basins. In: Naeser ND, McCollin TH (eds) Thermal history of sedimentary basins. Springer-Verlag, New York, pp 99–117

    Google Scholar 

  • Land LS, Macpherson GL (1992) Geothermometry from brine analyses: lessons from the Gulf Coast, U.S.A. Appl Geochem 7:333–340

    Article  Google Scholar 

  • Lloyd RM (1967) Oxygen-18 composition of oceanic sulfate. Science 156:1228–1231

    Article  Google Scholar 

  • Long G, Neglia S (1968) Composition de l’eau interstitielle des argiles et diagenèse des minéraux argileux. Revue de l’Institut Français du Pétrole 23:53–70

    Google Scholar 

  • Longinelli A (1979) Isotope geochemistry of some messinian evaporites: paleoenvironmental implications. Palaeogeogr Palaeocl 29:95–123

    Article  Google Scholar 

  • Longinelli A, Flora O (2007) Isotopic composition of gypsum samples of Permian and Triassic age from the northeastern Italian Alps: palaeoenvironmental implications. Chem Geol 245:275–284

    Article  Google Scholar 

  • Longinelli A, Ricchiuto TE (1977) Il ruolo delle acque meteoriche durante la crisi di salinità del Messiniano. Boll Soc Geol It 96:423–428

    Google Scholar 

  • Longinelli A, Selmo E (2003) Isotopic composition of precipitation in Italy: a first overall map. J Hydrol 270:75–88

    Article  Google Scholar 

  • Longstaffe FJ (2000) An introduction to stable oxygen and hydrogen isotopes and their use as fluid tracers in sedimentary systems. In: Kyser K (ed) Fluids and basin evolution, short course series, vol 28. Mineralogical Association of Canada, Ottawa, pp 115–162

    Google Scholar 

  • Lu FH, Meyers WJ (2003) Sr, S, and OSO4 Isotopes and the Depositional Environments of the Upper Miocene Evaporites, Spain. J Sediment Res 73:444–450

    Article  Google Scholar 

  • Lu FH, Meyers WJ, Schoonen MA (2001) S and O isotopes and their quantitative modeling of late Miocene gypsum, Nijar, Spain. Geochim Cosmochim Acta 65:3081–3092

    Article  Google Scholar 

  • Machel HG (2001) Bacterial and thermochemical sulfate reduction in diagenetic settings–old and new insights. Sediment Geol 140:143–175

    Article  Google Scholar 

  • Maekawa T, Imai N (2000) Hydrogen and oxygen isotope fractionation in water during gas hydrate formation. In: Holder GD, Bishnoi PR (eds) Gas hydrates: challenges for the future, Annals of the New York Academy of Sciences. New York Academy of Sciences, New York, pp 452–459

    Google Scholar 

  • Martin JB, Gieskes JM, Torres M, Kastner M (1993) Bromine and iodine in Peru margin sediments and pore fluids–implications for fluids origins. Geochim Cosmochim Acta 57:4377–4389

    Article  Google Scholar 

  • Martinelli G, Dadomo A (2005) Geochemical model of mud volcanoes from reviewed worldwide data. In: Martinelli G, Panahi B (eds) Mud volcanoes, geodynamics and seismicity. Springer, the Netherlands, pp 211–220

    Chapter  Google Scholar 

  • Matano F, Barbieri M, Di Nocera S, Torre M (2005) Stratigraphy and strontium geochemistry of Messinian evaporite-bearing successions of the southern Apennines foredeep, Italy: implications for the Mediterranean “salinity crisis” and regional palaeogeography. Palaeogeo, Palaeocl, Palaeoec 217:87–114

    Article  Google Scholar 

  • Mattavelli L, Margarucci V (1992) Malossa Field–Italy, Po Basin. In: Foster NH, Beaumont EA (eds) Treatise of petroleum geology, atlas of oil and gas field, structural traps VII. American Association of Petroleum Geologists, Tulsa, pp 119–133

    Google Scholar 

  • Mattavelli L, Ricchiuto T, Grignani D, Schoell M (1983) Geochemistry and habitat of natural gases in Po Basin, Northern Italy. AAPG Bull 67:2239–2254

    Google Scholar 

  • McArthur JM, Howart RJ, Bayley TR (2001) Strontium isotope stratigraphy: LOWESS version 3: best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. J Geol 109:155–170

    Article  Google Scholar 

  • Milliken KL, McBride EF, Cavazza W, Cibin U, Fontana D, Picard MD, Zuffa GG (1998) Geochemical history of calcite precipitation in Tertiary sandstones, Northern Apennines, Italy. In: Morad S (ed) Carbonate Cementation in Sandstones, IAS Special vol 26, pp 213–240

  • Molli G (2008) Northern Apennine-Corsica orogenic system: an updated overview. In: Diegesmund S, Füdenschuh B, Froitzheim N (eds) “Tectonic aspects of the Alpine-Dinaride-Carpathian System”. Geol. Soc. London Spec. Pub. 298, pp 413–442

  • Morad S, Worden RH, Ketzer JM (2003) Oxygen and hydrogen isotope composition of diagenetic clay minerals in sandstones: a review of the data and controls. In: Worden RH and Morad S (eds) Clay Mineral Cement in Sandstones, IAS Special vol 34, pp 63–92

  • Nadler A, Magaritz M (1980) Studies of marine solution basins—isotopic and compositional changes during evaporation. In: Nissenbaum A (ed) Hypersaline brines and evaporitic environments, developments in sedimentology. Elsevier, Amsterdam, pp 115–129

    Chapter  Google Scholar 

  • Nanni T, Vivalda P (1999) Le acque salate dell’avanfossa marchigiana: origine, chimismo e caratteri strutturali delle zone di emergenza. Boll Soc Geol It 118:191–215

    Google Scholar 

  • O’Neil JR, Clayton RN, Mayeda TK (1969) Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys 51:5547–5558

    Article  Google Scholar 

  • Olivero GF, Zauli M, Zuppi GM, Ricchiuto TE (1987) Isotopic composition and origin of sulphur compounds in groundwaters and brines in the Po Valley (Northern Italy). In: Studies On Sulphur Isotope Variations in Nature. IAEA, Vienna, pp 49–64

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)—A computer program for speciation, batch reaction, one-dimensional transport and inverse geochemical calculations. Water Resources Investigations Report, 95-4259. US Geological Survey

  • Picotti V, Capozzi R, Bertozzi G, Mosca F, Sitta A, Tornaghi M (2007) The Miocene Petroleum System of the Northern Apennines in the Central Po Plain (Italy). In: Lacombe O, Lavé J, Roure F, Vergés J (eds) Thrust belts and foreland basins—from fold kinematics to hydrocarbon systems. Frontiers in earth sciences. Springer, Berlin, pp 117–131

    Google Scholar 

  • Pieri M (1992) Cortemaggiore Field—Italy, Po plain, Northern Apennines. In: Foster NH, Beaumont EA (eds) Treatise of petroleum geology, atlas of oil and gas field, structural traps VII. AAPG, Tulsa, pp 99–118

    Google Scholar 

  • Pieri M (2001) Italian Petroleum Geology. I. In: Vai GB, Martini IP (eds) Anatomy of an orogen: the apennines and adjacent mediterranean basins. Kluwer, Dordrecht, pp 533–549

    Google Scholar 

  • Pierre C (1982) Teneurs en isotopes stables (18O, 2H, 13C, 34S) et conditions de genèse des évaporites marines: application à quelques milieux actuels et au Messinien de Méditerranée [Doct. thesis]. Univ. Paris-Sud Orsay

  • Pierre C, Catalano R (1976) Stable isotopes (18O, 13C, 2H) in the evaporitici sequence of the Ciminna basin (Sicily). In: Catalano R, Ruggieri G, Sprovieri R (eds) Messinian evaporites in the Mediterranean. Memorie Società Geologica Italiana 16:55–62

  • Pierre C, Rouchy JM (1990) Sedimentary and diagenetic evolution of Messinian evaporites in the Tyrrhenian Sea (ODP Leg 107, Sites 652,653, and 654): petrographic, mineralogical, and stable isotope records. In: Kastens KA, Mascle J, et al (eds) Proceedings of the ocean drilling program, scientific results, 107, pp 187–210

  • Ricchiuto T, McKenzie JA (1978) Stable isotope investigation of Messinian sulfate samples from DSDP Leg 42 A, eastern Mediterranean Sea. In: Hsu KJ, Montadert L et al (eds) Initial Report of the DSDP 42 (Part l). U.S. Govt. Printing Office, Washington, pp 657–660. doi:10.2973/dsdp.proc.42-1.126-2.1978

    Google Scholar 

  • Ricchiuto T, Zuppi GM, Bortolami GC, Olivero GF (1985) Le acque salate della Pianura Padana. Parte I Inquadramento Geochimico. In: Francani V, Zuppi GM (eds) Studi idrogeologici sulla Pianura Padana 1, Clup, Milano, pp 9–30

  • Ricci Lucchi F (1981) The Marnoso-arenacea turbidites, Romagna and Umbria Apennines. In: Ricci Lucchi F (ed) Excursion guidebook, with contribution on sedimentology of some italian basins. 2nd IAS Eur. Meeting, Bologna, pp 229–303

  • Rosenthal E (1997) Thermomineral water of Ca-chloride composition: review of diagnostics and of brine evolution. Environ Geol 32:245–250

    Article  Google Scholar 

  • Rosetti E, Valenti L (2002) Terme e acque segrete dell’Emilia Romagna. Le Lettere, Firenze

    Google Scholar 

  • Roveri M, Bassetti MA, Ricci Lucchi F (2001) The Mediterranean Messinian salinity crisis: an Apennine foredeep perspective. Sed Geol 140:201–214

    Article  Google Scholar 

  • Roveri M, Manzi V, Lucchi FR, Rogledi S (2003) Sedimentary and tectonic evolution of the Vena del Gesso basin (Northern Apennines, Italy): implications for the onset of the Messinian salinity crisis. Geol Soc Am Bull 115:387–405

    Article  Google Scholar 

  • Rozanski K, Araguas-Araguas L, Gonfiantini R (1993) Isotopic patterns in moderns global precipitaion. In: Swart PK, Lohman KL, McKenzie JA, Savin S (eds) Climate change in continental isotopic record. Geoph Monograph vol. 78, pp 1–37

  • Sborgi U, Galanti A, Conti Z (1936) Analisi chimica e chimico-fisica dell’acqua minerale di Fontevivo (Parma). Ann Chim Appl 26:502–515

    Google Scholar 

  • Schoeller H (1962) Les eaux souterraines. Masson, Paris

    Google Scholar 

  • Seal RR II, Alpers CN, Rye RO (2000) Stable isotope systematics of sulfate minerals. In: Alpers CN, Jambor JL, Nordstrom DK (eds) Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance. Reviews in Mineralogy and Geochemistry, vol 40, Mineralogical Society of America and Geochemical Society, Washington, D.C., pp 541–602

  • Sharp Z (2007) Principles of stable isotope geochemistry. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Shouakar-Stash O, Frape SK, Drimmie RJ (2005a) Determination of bromine stable isotopes using continuous-flow isotope ratio mass spectrometry. Anal Chem 77:4027–4033

    Article  Google Scholar 

  • Shouakar-Stash O, Drimmie RJ, Frape SK (2005b) Determination of inorganic chlorine stable isotopes by Continuous Flow Isotope Ratio Mass spectrometry. Rapid Commun Mass Spectrom 19:121–127

    Article  Google Scholar 

  • Siemann MG, Schramm M (2000) Thermodynamic modelling of the Br partition between aqueous solutions and halite. Geochim Cosmochim Acta 64:1681–1693

    Article  Google Scholar 

  • Starinsky A, Bielsky M, Lazar B, Steinitz G, Raab M (1983) Strontium isotope evidence on the history of oilfield brines, Mediterranean Coastal Plain, Israel. Geochim Cosmochim Acta 47:687–695

    Article  Google Scholar 

  • Stewart MA, Spivack AJ (2004) The Stable-Chlorine isotope composition of natural and anthropogenic materials. In: Johnson CM, Beard BL, Albarede F (eds) Geochemistry of non-traditional stables isotopes, Reviews in Mineralogy & Geochemistry 55. Mineralogical Society of America and the Geochemical Society, Washington D.C., pp 231–254

    Google Scholar 

  • Thode HG, Monster J (1965) Sulfur isotope geochemistry of petroleum, evaporites and ancient seas. In: Young A, Galley JE (eds) Fluids in Subsurface Environments, AAPG Memoir 4, Tulsa, Oklahoma, pp 367–377

  • Toscani L, Venturelli G, Boschetti T (2001) Sulphide-bearing waters in Northern Apennines, Italy: general features and water rock interaction. Aquat Geochem 7:195–216

    Article  Google Scholar 

  • Toscani L, Boschetti T, Maffini M, Barbieri M, Mucchino C (2007) The groundwaters of Fontevivo (Parma Province, Italy): redox processes and mixing with brine waters. Geochem-Explor Env A 7:23–40

    Article  Google Scholar 

  • Vaccari S, Toscani L, Ortalli I, Dalledonne C, Martinelli G, Venturelli G (1999) Misure di radon in sorgenti e pozzi dell’Appennino Reggiano-Parmense. Quad Geol Appl 2:3315–3320 (1999 supplementary volume)

    Google Scholar 

  • Van der Weijden C (1992) Early diagenesis and marine pore water. In: Wolf KH, Chilingarian GV (eds) Diagenesis III. Elsevier, Amsterdam, pp 1–134

    Google Scholar 

  • Vengosh A, Starinsky A, Anati DA (1994) The origin of Mediterranean interstitial waters–relics of ancient Miocene brines: a re-evaluation. Earth Planet Sc Lett 121:613–627

    Article  Google Scholar 

  • Vengosh A, Gieskes J, Mahn C (2000) New evidence for the origin of hypersaline pore fluids in the Mediterranean basin. Chem Geol 163:287–298

    Article  Google Scholar 

  • Venturelli G (2003) Acque, minerali e ambiente. Fondamenti di geochimica dei processi di bassa temperatura. Pitagora, Bologna

  • Venturelli G, Boschetti T, Duchi V (2003) Na-carbonate waters of extreme composition: Possible origin and evolution. Geochem J 37:351–366

    Google Scholar 

  • Wolery TW, Jarek RL (2003) EQ3/6, version 8.0—Software User’s Manual. Civilian Radioactive Waste Management System, Management & Operating Contractor. Sandia National Laboratories, Albuquerque, New Mexico

  • Worden RH, Smalley PC, Oxtoby NH (1996) The effects of thermochemical sulfate reduction upon formation water salinity and oxygen isotopes in carbonate gas reservoirs. Geochim Cosmochim Acta 60:3925–3931

    Article  Google Scholar 

  • Wygrala BP (1987) Integrated computer-aided basin modeling applied to analysis of hydrocarbon generation history in a Northern Italian oil field. Org Geochem 13:187–197

    Article  Google Scholar 

  • Xie X, Jiu JJ, Li S, Cheng J (2003) Salinity variation of formation water and diagenesis reaction in abnormal pressure environments. Sci China Ser D 46:269–284

    Article  Google Scholar 

Download references

Acknowledgments

The work was partly funded by the MURST-PRIN2005 project. Many thanks to all University of Parma fellows involved in the analytical works: Monica Maffini and Marinella Chierici for support on chemical, Silvia Vaccari for radon, Enrico Selmo for water isotope analyses. Special thanks to Liliana Krotz and Guido Giazzi, Thermo Scientific—Rodano, Milano, for total C and total N analyses. Reviews by two anonymous referees were greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziano Boschetti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 138 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boschetti, T., Toscani, L., Shouakar-Stash, O. et al. Salt Waters of the Northern Apennine Foredeep Basin (Italy): Origin and Evolution. Aquat Geochem 17, 71–108 (2011). https://doi.org/10.1007/s10498-010-9107-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-010-9107-y

Keywords

  • Salt waters
  • Chemical and isotope composition
  • Seawater evaporation
  • Northern Apennine Foredeep