Skip to main content
Log in

Fe(III) Reduction in the Presence of Catechol in Seawater

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Fe(II)-Fe(III) redox behavior has been studied in the presence of catechol under different pH, ionic media, and organic compound concentrations. Catechol undergoes oxidation in oxic conditions producing semiquinone and quinone and reduces Fe(III) in natural solutions including seawater (SW). It is a pH-dependent process. Under darkness, the amount of Fe(II) generated is smaller and is related to less oxidation of catechol. The Fe(II) regeneration is higher at lower pH values both in SW with log k = 1.86 (M−1 s−1) at pH 7.3 and 0.26 (M−1 s−1) at pH 8.0, and in NaCl solutions with log k of 1.54 (M−1 s−1) at pH 7.3 and 0.57 (M−1 s−1) at pH 8.0. At higher pH values, rate constants are higher in NaCl solutions than in SW. This is due to the complexation of Mg(II) present in the media with the semiquinone that inhibits the formation of a second Fe(II) through the reaction of this intermediate with other center Fe(Cat)+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anderson MA, Morel FMM (1982) The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira-weissflogii. Limnol Oceanogr 27:789–813

    Article  Google Scholar 

  • Avdeef A, Sofen SR, Bregante TL, Raymond KN (1978) Coordination chemistry of microbial iron transport compounds. 9. Stability constants for catechol models of enterobactin. J Am Chem Soc 100:5362–5370

    Article  Google Scholar 

  • Borer PM, Sulzberger B, Reichard P, Kraemer SM (2005) Effect of siderophores on the light-induced dissolution of colloidal iron(III) (hydr)oxides. Mar Chem 93:179–193

    Article  Google Scholar 

  • Borer PM, Sulzberger B, Hug SJ, Kraemer SM, Kretzschmar R (2009) Photoreductive dissolution of iron(III) (hydr)oxides in absence of organic ligands: experimental studies and kinetic modelling. Environ Sci Technol 43:1864–1870

    Article  Google Scholar 

  • Boye M, Nishioska J, Croot PL, Laan P, Timmermans KR, de Baar HJW (2005) Major deviation of iron complexation during 22 days of a mesoscale iron enrichment in the open Southern Ocean. Mar Chem 96:257–271

    Article  Google Scholar 

  • Brooksby PA, Schiel DR, Abell AD (2008) Electrochemistry of catechol terminated monolayers with Cu(II), Ni(II) and Fe(III) cations: a model for the marine adhesive interface. Langmuir 24:9074–9081

    Article  Google Scholar 

  • Bruland KW, Rue EL, Smith GH (2001) Iron an macronutrients in California coastal upwelling regimes: implications for diatom blooms. Limnol Oceanogr 46:1661–1674

    Article  Google Scholar 

  • Craig P, Shaw TJ, Miller P et al (2009) Use of multiparametric techniques to quantify the effects of naturally occurring ligands on the kinetics of Fe(II) oxidation. Environ Sci Technol 43:337–342

    Article  Google Scholar 

  • de Baar HJW, Boyd PW, Koale KH et al (2005) Synthesis of iron fertilization experiments: from the iron age to the age of enlightenment. J Geophys Res 110:C09S16

    Article  Google Scholar 

  • Dhungana S, Anthony CRIII, Hersman LE (2007) Ferrihydrite dissolution by pyridine-2, 6-bis(monothiocarboxylic acid) and hydrolysis products. Geochim Cosmochim Acta 71:5651–5660

    Article  Google Scholar 

  • González-Dávila M, Santana-Casiano JM, Millero FJ (2005) Oxidation of iron(II) nanomolar with H2O2 in seawater. Geochim Cosmochim Acta 69:83–93

    Article  Google Scholar 

  • Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond Ser A 147:332–351

    Article  Google Scholar 

  • Harrington JM, Crumbliss AL (2009) The redox hypothesis in siderophore-mediated iron uptake. Biometals doi:10.1007/s10534-009-9233-4

  • Hersman L, Lloyd T, Sposito G (1995) Siderophore-promoted dissolution of hematite. Geochim Cosmochim Acta 59:3327–3330

    Article  Google Scholar 

  • Hider RC, Mohd-Nor AR, Silver J (1981) Model compounds for microbial iron-transport compounds. Part 1. Solution chemistry and Mössbauer study of iron(II) and iron(III) complexes form phenolic and catecholic systems. J Sol Chem Soc Dalton Trans 1:609–622

    Article  Google Scholar 

  • Hutchins DA, Bruland KW (1998) Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature 393:561–564

    Article  Google Scholar 

  • Hutchins DA, Witter AE, Butler A, Luther GW (1999) Competition among marine phytoplankton for different chelated iron species. Nature 400:858–861

    Article  Google Scholar 

  • Johnson KS, Gordon RM, Coale KH (1997) What controls dissolved iron concentrations in the world ocean? Mar Chem 57:137–161

    Article  Google Scholar 

  • Jones GJ, Palenik BP, Morel FMM (1987) Trace-metal reduction by phytoplankton-the role of plasmalemma redox enzymes. J Phycol 23:237–244

    Article  Google Scholar 

  • Kim D, Duckworth OW, Strathmann TJ (2009) Hydroxamate siderophore-promoted reactions between iron(II) and nitroaromatic groundwater contaminants. Geochim Cosmochim Acta 73:1297–1311

    Article  Google Scholar 

  • King DW, Lounsbury HA, Millero FJ (1995) Rates and mechanism of Fe(II) oxidation at nanomolar total iron concentration. Environ Sci Technol 29:818–824

    Article  Google Scholar 

  • Kraemer SM (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci 66:3–18

    Article  Google Scholar 

  • Kuma K, Nishioka J, Matsunaga K (1996) Controls on iron(III) hydroxide solubility in seawater: the influence of pH and natural organic chelators. Limnol Oceanogr 41:396–407

    Google Scholar 

  • Liu XW, Millero FJ (2002) The solubility of iron in seawater. Mar Chem 77:43–54

    Article  Google Scholar 

  • Maldonado MT, Price NM (2001) Reduction and transport of organically bound iron by Thalassiosira oceanica (Bacillariophyceae). J Phycol 37:298–309

    Article  Google Scholar 

  • Miller WL, Kester D (1994) Photochemical iron reduction and iron bioavailability in seawater. J Mar Res 52:325–343

    Article  Google Scholar 

  • Millero FJ (1986) The pH of estuarine waters. Limnol Oceanogr 31:839–847

    Google Scholar 

  • Millero FJ, Sotolongo S, Izaguirre M (1987) The oxidation kinetics of Fe(II) in seawater. Geochim Cosmochim Acta 51:793–801

    Article  Google Scholar 

  • Nikolić GM, Premović PI, Nicolić RS (1998) Spectrophotometric study of catechol oxidation by aerial O2 in alkaline aqueous solutions containing Mg(II) ions. Spectrosc Lett 31:327–333

    Article  Google Scholar 

  • Reid RT, Butler A (1991) Investigation of the mechanism of iron acquisition by the marine bacterium Alteromonas luteoviolaceus: characterization of siderophore production. Limnol Oceanogr 36:1783–1792

    Article  Google Scholar 

  • Rich HW, Morel FMM (1990) Availability of well-defined iron colloids to the marine diatom Thalassiosira weissflogii. Limnol Oceanogr 35:652–662

    Article  Google Scholar 

  • Rijkenberg MJA, Gerringa LJA, Neale PJ, Timmermans KR, Buma AGJ, de Baar HJW (2004) UVA variability overrules UVB ozone depletion effects on the photoreduction of iron in the Southern Ocean. Geophys Res Lett 31:1–5

    Article  Google Scholar 

  • Rijkenberg MJA, Gerringa LJA, Carolus VE, Velzeboer I, de Baar HJW (2006) Enhancement and inhibition of iron photoreduction by individual ligands in open ocean seawater. Geochim Cosmochim Acta 70:2790–2805

    Article  Google Scholar 

  • Rijkenberg MJA, Gerringa LJA, Timmermans KR, Fischer AC, Kroon KJ, Buma AGJ, BTh Wolterbeek, de Baar HJW (2008) Enhancement of the reactive iron pool by marine diatoms. Mar Chem 109:29–44

    Article  Google Scholar 

  • Santana-Casiano JM, González-Dávila M, Rodríguez MJ, Millero FJ (2000) The effect of organic compounds in the oxidation kinetics of Fe(II). Mar Chem 70:211–222

    Article  Google Scholar 

  • Santana-Casiano JM, González-Dávila M, Millero FJ (2005) Oxidation of nanomolar level of Fe(II) with oxygen in natural waters. Environ Sci Technol 39:2073–2079

    Article  Google Scholar 

  • Schweigert N, Zehnder AJB, Eggen RIL (2001) Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environ Microbiol 3:81–91

    Article  Google Scholar 

  • Sulzberger B, Laubscher H (1995) Reactivity of various types of iron(III) (hydr)oxides towards light-induced dissolution. Mar Chem 50:103–115

    Article  Google Scholar 

  • Takeda S, Kamatani A (1989) Photoreduction of Fe(III)-EDTA complex and its availability to the coastal diatom Thalassiosira weissflogii, Red Tides. Biol Environ Sci Toxicol 349–352

  • Theis TL, Singer PC (1974) Complexation of iron(II) by organic matter and its effect on iron(II) oxygenation. Environ Sci Technol 8:569–573

    Article  Google Scholar 

  • Uchimiya M, Stone AT (2006) Redox reactions between iron and quinones: thermodynamic constraints. Geochim Cosmochim Acta 70:1388–1401

    Article  Google Scholar 

  • Waite TD (2001) Thermodynamics of the iron system in seawater. In: Turner DR, Hunter KA (eds) The biochemistry of iron in seawater. Wiley, New York, pp 291–342

    Google Scholar 

  • Waite TD, Morel FMM (1984) Photoreductive dissolution of colloidal iron oxide: effect of citrate. J Colloid Interface Sci 102:121–137

    Article  Google Scholar 

  • Wells ML (1999) Manipulating iron availability in nearshore waters. Limnol Oceanogr 44:1002–1008

    Article  Google Scholar 

  • Wells ML, Mayer LM (1991) The photoconversion of colloidal iron oxyhydroxides in seawater. Deep Sea Res 38:1379–1395

    Article  Google Scholar 

  • Wells ML, Zorkin NG, Lewis AG (1983) The role of colloid chemistry in providing a source of iron to phytoplankton. J Mar Res 41:731–746

    Article  Google Scholar 

  • Wells ML, Price NM, Bruland KW (1994) Iron limitation and the Cyanobacterium synechococcus in equatorial Pacific waters. Limnol Oceanogr 39:1481–1486

    Article  Google Scholar 

  • Wilhelm SW, Trick CG (1994) Iron-limited growth of cyanobacteria:siderophore production is a common response. Limnol Oceanogr 39:1979–1984

    Article  Google Scholar 

  • Winkelmann G (1991) Handbook of microbial iron chelates. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Project CTM2006-09857 of Ministerio de Ciencia y Tecnología from Spain. F.J. Millero wishes to acknowledge the support of the Oceanographic Section of the National Science Foundation and the National Oceanic and Atmospheric Administration for supporting his marine physical chemistry studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Magdalena Santana-Casiano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santana-Casiano, J.M., González-Dávila, M., González, A.G. et al. Fe(III) Reduction in the Presence of Catechol in Seawater. Aquat Geochem 16, 467–482 (2010). https://doi.org/10.1007/s10498-009-9088-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-009-9088-x

Keywords

Navigation