Skip to main content
Log in

Modeling the Acid–Base Surface Properties of Aquatic Sediments

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

We propose a model that explains the acid–base surface properties of clastic sediments from two Argentinean reservoir lakes. The model uses potentiometric titration data sets and fixed parameters such as the apparent stability constants and reaction stoichiometries of acid–base equilibriums involving known mineral phases. The model considers that sediments act as a set of independent sorption surfaces, such as organic matter, clay silicate, and iron (hydr)oxides, thus the acid–base equilibrium and the correspondent protolytic constants are represented by a humic acid, a Na-illite, and a poor crystalline Fe-hydr(oxide). In agreement with experimental data, the model predicts that all sediment samples show a similar charging behavior, increasing the negative charge as the pH increases. The net charge of sediments is controlled by the presence of negatively charged minerals and/or organic matter coatings. This reveals the great influence of clays and organic matter functional groups on the acid–base surface properties of sediments, and consequently on the surface reactivity toward contaminant transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antelo J, Avena M, Fiol S, López R, Arce F (2005) Effect of phosphate and ionic strength on the adsorption of phosphate and arsenate at the goethite-water interface. J Colloid Interface Sci 285:476–486

    Article  Google Scholar 

  • Avena MJ (2002) Acid–base behavior of clay surfaces in aqueous media. In: Hubbard A (ed) Encyclopedia of surface and colloid science. Marcel Dekker, New York, pp 37–63

    Google Scholar 

  • Avena MJ, De Pauli CP (1998) Proton adsorption and electrokinetics of an argentinean montmorillonite. J Colloid Interface Sci 202:195–204

    Article  Google Scholar 

  • Avena MJ, Valenti L, Pfaffen V, De Pauli CP (2001) Methylene blue dimerization does not interference in surface-area measurements of kaolinite and soils. Clays Clay Miner 49:168–173

    Article  Google Scholar 

  • Beckett R, Ngoe P Le (1990) The role of organic matter and ionic composition in determining the surface charge of suspended particles in natural waters. Colloids Surf 44:35–49

    Article  Google Scholar 

  • Borgnino L, Avena M, De Pauli CP (2006) Surface properties of sediments from two argentinean reservoirs and their effect on the rate of phosphate release. Water Res 40:2659–2666

    Article  Google Scholar 

  • Borkovec M (1997) Origin of 1-pK and 2-pK models for ionizable water–solid interfaces. Langmuir 13:2608–2613

    Article  Google Scholar 

  • Camilión C (2003) Clay mineral composition of pampean loess (Argentina). Quat Int 17:27–31

    Article  Google Scholar 

  • Cancès B, Ponthieu M, Castrec-Rouelle M, Aubry E, Benedetti MF (2003) Metal ions speciation in a soil and its solution: experimental data and model results. Geoderma 113:341–355

    Article  Google Scholar 

  • Davis JA, James RO, Lechie JO (1978) Surface ionization and complexation at the oxide/water interface: 1. computation of electrical double layer properties in simple electrolytes. J Colloid Interface Sci 63:480–499

    Article  Google Scholar 

  • Davis JA, Coston JA, Kent DB, Fuller CC (1998) Application of the surface complexation concept to complex mineral assemblages. Environ Sci Technol 32:2820–2828

    Article  Google Scholar 

  • Davis JA, Payne TE, Waite TD (2002) Simulating the pH and pCO2 dependence of uranium (VI) adsorption on aquifer sediments. In: Zhang PC, Brady PV (eds) Geochemistry of soil radionuclides. SSSA Special Pub 59:61–86. SSSA, Madison, WI

  • Davis JA, Meece DE, Kohler M, Curtis GP (2004) Approaches to surface complexation modeling of uranium(VI) adsorption on aquifer sediments. Geochim Cosmochim Acta 68:3621–3641

    Article  Google Scholar 

  • Dijkstra JJ, Meeussen JCL, Comans RJ (2009) Evaluation of a generic multisurface sorption model for inorganic soil contaminants. Environ Sci Technol (in press)

  • Douch J, Hamdani M, Fessi H, Elaissari A (2009) Acid–base behavior of a colloidal clays fraction extracted from natural quartz sand: effect of permanent surface charge. Colloids Surf A Physicochem Eng Asp 338:51–60

    Article  Google Scholar 

  • Duc M, Gaboriaud F, Thomas F (2005) Sensitivity of the acid–base properties of clays to the methods of preparation and measurement: 1. Literature review. J Colloid Interface Sci 289:139–147

    Article  Google Scholar 

  • Dzombak DA, Morel FMM (1990) Surface complexation modeling: hydrous ferric oxide. John Wiley and Sons, New York

    Google Scholar 

  • Ferreira JR, Lawlor AJ, Bates JM, Clarke KJ, Tipping E (1997) Chemistry of riverine and estuarine suspended particles from the Ouse-Trent system, UK. Coll Surf A 120:183–198

    Article  Google Scholar 

  • Fest EPMJ, Temminghoff EJM, Griffioen J, van Riemsdijk WH (2005) Proton buffering and metal leaching in sandy soils. Environ Sci Technol 39(20):7901–7908

    Article  Google Scholar 

  • Filius JD, Lumsdon DG, Meeussen JCL, Hiemstra T, Van Riemsdijk WH (2000) Adsorption of fulvic acid on goethite. Geochim Cosmochim Acta 64:51–60

    Article  Google Scholar 

  • Goldberg S, Lesch SM, Suarez DL, Basta NT (2005) Predicting arsenate adsorption by soils using soil chemical parameters in the constant capacitance model. Soil Sci Soc Am J 69:1389–1398

    Article  Google Scholar 

  • Goldberg S, Criscenti LJ, Turner DR, Davis JA, Cantrell KJ (2007) Adsorption–desorption processes in subsurface reactive transport modeling. Vadose Zone J 6:407–435

    Article  Google Scholar 

  • Heil D, Sposito G (1993) Organic matter role in illitic soil colloids flocculation: II surface charge. Soil Sci Soc Am J 57:1246–1253

    Article  Google Scholar 

  • Herbelin AL, Westall JC (1999) FITEQL. A computer program for determination of chemical equilibrium constants from experimental data. Version 4.0. Department of chemistry. Oregon State University. Report 99-01

  • Hiemstra T, van Riemsdijk WH (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J Colloid Interface Sci 179:488–508

    Article  Google Scholar 

  • Hiemstra T, van Riemsdijk WH (1999) Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides. J Colloid Interface Sci 210:182–193

    Article  Google Scholar 

  • Hiemstra T, De Wit JCM, van Riemsdijk WH (1989a) Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: a new approach: II. application to various important (hydr)oxides. J Colloid Interface Sci 133:105–117

    Article  Google Scholar 

  • Hiemstra T, van Riemsdijk WH, Bolt GH (1989b) Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: a new approach: I. model description an evaluation of intrinsic reaction constants. J Colloid Interface Sci 133:91–104

    Article  Google Scholar 

  • Honeyman BD (1984) Cation and anion adsorption at the oxide/solution interface in systems containing binary mixtures of adsorbents: an investigation of the concept. Ph.D diss Stanford Univ, Stanford

    Google Scholar 

  • Jackson ML (1982) Análisis químico de los suelos. Cuarta edición. Ediciones Omega, Barcelona

    Google Scholar 

  • Jacquat O, Voegelin A, Kretzschmar R (2009) Soil properties controlling Zn speciation and fractionation in contaminated soils. Geochim. et Cosmochim. Acta (in press)

  • Jara AA, Goldberg S, Mora ML (2005) Studies of the surface charge of amorphous aluminosilicates using surface complexation models. J Colloid Interface Sci 292:160–170

    Article  Google Scholar 

  • Milne CJ, Kinniburgh DG, Tipping E (2001) Generic NICA-Donnan model parameters for proton binding by humic substances. Environ Sci Technol 35:2049–2059

    Article  Google Scholar 

  • Mukhopadhyay B, Walther JV (2001) Acid–base chemistry of albite surfaces in aqueous solutions at standard temperature and pressure. Chem Geol 174:415–443

    Article  Google Scholar 

  • Nagy NM, Kónya J (2007) Study of pH-dependent charges of soils by surface acid–base properties. J Colloid Interface Sci 305:94–100

    Article  Google Scholar 

  • Rietra RPJJ, Hiemstra T, van Riemsdijk WH (1999) The relationship between molecular structure and ion adsorption on variable charge minerals. Geochim Cosmochim Acta 63:3009–3015

    Article  Google Scholar 

  • Sattler FJ (2003). Caracterización mineralógica y textural de los sedimentos de los embalses San Roque y Los Molinos (Córdoba, Argentina): su significado ambiental y la relación con sus áreas de aportes. Tesis de grado. Departamento de Geología básica. Escuela de Geología. UNC

  • Schindler PW, Gamsjäger H (1972) Acid–base reactions of the TiO2 (Anatase)—water interface and the point of zero charge of TiO2 suspensions. kolloid Z.u.Z. Polymer 250:759–763

    Google Scholar 

  • Serrano S, O’Day PA, Vlassopoulos D, García-González MT, Garrido F (2009) A surface complexation and ion exchange model of Pb and Cd competitive sorption on natural soils. Geochim Cosmochim Acta 73:543–558

    Article  Google Scholar 

  • Sparks D (2003) Environmental soil chemistry, 2nd edn. Academic Press, Amsterdam

    Google Scholar 

  • Sposito G (2004) The surface chemistry of natural particles. Oxford University Press, New York

    Google Scholar 

  • Stumm W (1992) Chemistry of the solid-water interface. John Wiley and Sons, New York

    Google Scholar 

  • Stumm W, Huang CP, Jenking SR (1970) Specific chemical interaction affecting the stability of dispersed systems. Croat Chem Acta 42:223–245

    Google Scholar 

  • Taubaso C, Dos Santos Afonso M, Torres Sánchez RM (2004) Modelling soil surface charge density using mineral composition. Geoderma 121:123–133

    Article  Google Scholar 

  • Tipping E, Cooke D (1982) The effect of adsorbed humic substances on the surface charge of goethite in fresh water. Geochim Cosmochim Acta 46:75–80

    Article  Google Scholar 

  • Tipping E, Rieuwerts J, Pan G, Ashmore MR, Lofts S, Hill MTR, Farago ME, Thornton I (2003) The solid-solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales. Environ Pollut 125:213–225

    Article  Google Scholar 

  • Torn LH, de Keizer A, Koopal LK, Blokzijl W, Lyklema J (1998) Polymer adsorption on a patchwise heterogeneous surface. Progr Colloid Polym Sci 109:153–160

    Article  Google Scholar 

  • Wang F, Chen J, Chen J, Forsling W (1997) Surface properties of natural aquatic sediments. Water Res 31:1796–1805

    Article  Google Scholar 

  • Weng L, Temminghoff EJM, van Riemsdijk WH (2001) Contribution of individual sorbents to the control of heavy metal activity in sandy soil. Environ Sci Technol 35:4436–4443

    Article  Google Scholar 

  • Weng L, van Riemsdijk WH, Koopal LK, Hiemstra T (2006) Ligand and Charge Distribution (LCD) model for the description of fulvic acid adsorption to goethite. J Colloid Interface Sci 302:442–457

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Argentina’s FONCYT, SECYT-UNC, and CONICET. M. G. García, C. P. De Pauli, M. Avena, M. A. Blesa, and P. J. Depetris are members of CICyT in Argentina’s CONICET. L. Borgnino acknowledges a postdoctoral fellowship from CONICET. We are specially grateful to María Dos Santo Afonso and anonymous reviewers for suggesting significant improvements to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Borgnino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borgnino, L., Garcia, M.G., del Hidalgo, M.V. et al. Modeling the Acid–Base Surface Properties of Aquatic Sediments. Aquat Geochem 16, 279–291 (2010). https://doi.org/10.1007/s10498-009-9079-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-009-9079-y

Keywords

Navigation