Skip to main content
Log in

The Hydrolysis of Al(III) in NaCl solutions: A Model for M(II), M(III), and M(IV) Ions

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Understanding the identity and stability of the hydrolysis products of metals is required in order to predict their behavior in natural aquatic systems. Despite this need, the hydrolysis constants of many metals are only known over a limited range of temperature and ionic strengths. In this paper, we show that the hydrolysis constants of 31 metals [i.e. Mn(II), Cr(III), U(IV), Pu(IV)] are nearly linearly related to the values for Al(III) over a wide range of temperatures and ionic strengths. These linear correlations allow one to make reasonable estimates for the hydrolysis constants of +2, +3, and +4 metals from 0 to 300°C in dilute solutions and 0 to 100°C to 5 m in NaCl solutions. These correlations in pure water are related to the differences between the free energies of the free ion and complexes being almost equal

$$ \Updelta {\text{G}}^\circ \left( {{\text{Al}}^{3 + } } \right) - \Updelta {\text{G}}^\circ \left( {{\text{Al}}\left( {\text{OH}} \right)_{j}^{{\left( {3 - j} \right)}} } \right) \cong \Updelta {\text{G}}^\circ \left( {{\text{M}}^{n + } } \right) - \Updelta {\text{G}}^\circ \left( {{\text{M}}\left( {\text{OH}} \right)_{j}^{{\left( {n - j} \right)}} } \right) $$

The correlation at higher temperatures is a result of a similar relationship between the enthalpies of the free ions and complexes

$$ \Updelta {\text{H}}^\circ \left( {{\text{Al}}^{3 + } } \right) - \Updelta {\text{H}}^\circ \left( {{\text{Al}}\left( {\text{OH}} \right)_{j}^{3 - j} } \right) \cong \Updelta {\text{H}}^\circ \left( {{\text{M}}^{n + } } \right) - \Updelta {\text{H}}^\circ \left( {{\text{M}}\left( {\text{OH}} \right)_{j}^{n - j} } \right) $$

The correlations at higher ionic strengths are the result of the ratio of the activity coefficients for Al(III) being almost equal to that of the metal.

$$ \gamma \left( {{\text{M}}^{n + } } \right)/\gamma \left( {{\text{M}}\left( {\text{OH}} \right)_{j}^{n - j} } \right) \cong \gamma \left( {{\text{Al}}^{3 + } } \right)/\gamma \left( {{\text{Al}}\left( {\text{OH}} \right)_{j}^{3 - j} } \right) $$

The results of this study should be useful in examining the speciation of metals as a function of pH in natural waters (e.g. hydrothermal fresh waters and NaCl brines).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baes CF Jr, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York

  • Benézéth P, Palmer DA, Wesolowski DJ (2001) Aqueous high-temperature solubility studies. II. The solubility of Boehmite at 0.03 m ionic strength as a function of temperature and pH as determined by in situ measurements. Geochim Cosmochim Acta 65:2097–2111

    Article  Google Scholar 

  • Bourcier WL, Knauss KG, Jackson KJ (1993) Aluminum hydrolysis constants to 250°C from boehmite solubility measurements. Geochim Cosmochim Acta 57:747–762

    Article  Google Scholar 

  • Castet S, Dandurand JL, Schott J, Gout R (1993) Boehmite solubility and aqueous aluminum speciation in hydrothermal solutions (90–350°). Experimental study and modelling. Geochim Cosmochim Acta 57:4869–4884

    Article  Google Scholar 

  • Choppin GR, Bond AH, Hromadka PM (1997) Redox speciation of plutonium. J Radioanal Nuclear Chem 219:203–210

    Article  Google Scholar 

  • Couturier Y, Michard G, Sarazin G (1984) Constantes de formation des complexes hydroxydés de l’aluminum en solution aqueuse de 20 et 70°C. Geochim Cosmochim Acta 48:649–659

    Article  Google Scholar 

  • Ekberg C, Albinsson Y, Comarmound MJ, Brown PL (2000) Studies on the complexation behavior of Thorium(IV). 1. Hydrolysis equilibria. J Soln Chem 29:63–86

    Article  Google Scholar 

  • Ekberg C, Källvenius G, Albinsson Y, Brown PL (2004) Studies on the hydrolytic behavior of zirconium(IV). J Soln Chem 33:47–79

    Article  Google Scholar 

  • Frink CR, Peech M (1963) Hydrolysis of the aluminum ion in dilute solutions. Inorg Chem 2:473–478

    Article  Google Scholar 

  • Klungness GD, Byrne RH (2000) Comparative hydrolysis behavior of the rare earths and yttrium: the influence of temperature and ionic strength. Polyhedron 19:99–107

    Article  Google Scholar 

  • Manfredi C, Caruso V, Vasca E, Vero S, Ventimiglia E, Pallidino G, Ferri D (2006) On the hydrolysis of tetravalent uranium ion U4+. J Soln Chem 35:927–937

    Article  Google Scholar 

  • Millero FJ, Pierrot D (2007) The activity coefficients of Fe(III) complexes with hydroxide in NaCl and NaClO4 solutions. Geochim Cosmochim Acta 71:4825–4833

    Article  Google Scholar 

  • Millero FJ, Woosley RJ (2009) The hydrolysis of Al(III) in NaCl solutions—a model for Fe(III). Environ Sci Technol 43(6):1818–1823

    Article  Google Scholar 

  • Neck V, Kim JI (2001) Solubility and hydrolysis of tetravalent actinides. Radiochem Acta 89:1–16

    Article  Google Scholar 

  • Palmer DA, Wesolowski DJ (1992) Aluminum speciation and equilibria in aqueous solution: II. The solubility of gibbsite in acidic sodium chloride solutions from 30 to 70°C. Geochim Cosmochim Acta 56:1092–1111

    Google Scholar 

  • Palmer DA, Wesolowski DJ (1993) Aluminum speciation and equilibria in aqueous solution: III. Potentiometric determination of the first hydrolysis constant of aluminum (III) in sodium chloride solutions to 125°C. Geochim Cosmochim Acta 57:2929–2938

    Article  Google Scholar 

  • Paulson AJ, Kester DR (1980) Copper(II) ion hydrolysis in aqueous solution. J Solution Chem 9:269–277

    Article  Google Scholar 

  • Pivovarov S (2005) Modeling of ionic equilibria of trace metals (Cu2+, Zn2+, Cd2+) in concentrated aqueous electrolyte solutions at 25°C. J Colloid Interface Sci 291:421–432

    Article  Google Scholar 

  • Rai D, Xia Y, Hess NJ, Strachan DM, McGrail BP (2001) Hydroxo and chloro complexes/Ion interactions of Hf4+ and the solubility product of HfO2(am). J Solution Chem 30:949–967

    Article  Google Scholar 

  • Schofield RK, Taylor AW (1954) The hydrolysis of aluminum salt solutions. J Chem Soc 4445–4448

  • Tarapcik P, Fourest B, Giffaut E (2005) Comparative approach of the solubility of protactinium oxy/hydroxides. Radiochem Acta 93:27–33

    Article  Google Scholar 

  • Verdes G, Gout R, Castet S (1992) Thermodynamic properties of aluminate ion and of bayerite, boehmite, diaspore and gibbsite. Eur J Mineral 4:767–792

    Google Scholar 

  • Wesolowski DJ (1992) Aluminum speciation and equilibria in aqueous solution: I. The solubility of gibbsite in the system Na-K-Cl-OH-Al(OH)4 from 0 to 100°C. Geochim Cosmochim Acta 56:1065–1091

    Article  Google Scholar 

  • Wesolowski DJ, Palmer DA (1994) Aluminum speciation and equilibria in aqueous solutions: V. Gibbsite solubility at 50°C and pH 3–9 in 1 molal NaCl solutions (a general model for aluminum speciation; analytical methods). Geochim Cosmochim Acta 58:2947–2969

    Article  Google Scholar 

  • Zakanova-Herzog VP, Seward TM, Sulemenov OM (2006) Arsenous acid ionization in aqueous solutions from 25 to 300°C. Geochim Cosmochim Acta 70:1928–1938

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Oceanographic Section of the National Science Foundation and the National Oceanic and Atmospheric Administration for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank J. Millero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woosley, R.J., Millero, F.J. The Hydrolysis of Al(III) in NaCl solutions: A Model for M(II), M(III), and M(IV) Ions. Aquat Geochem 16, 317–324 (2010). https://doi.org/10.1007/s10498-009-9075-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-009-9075-2

Keywords

Navigation