Aquatic Geochemistry

, Volume 15, Issue 1–2, pp 123–157 | Cite as

Origin of Salts and Brine Evolution of Bolivian and Chilean Salars

  • François RisacherEmail author
  • Bertrand Fritz
Original Paper


Central Andes in Bolivia and northern Chile contain numerous internal drainage basins occupied by saline lakes and salt crusts (salars). Salts in inflow waters stem from two origins: alteration of volcanic rocks, which produces dilute waters, and brine recycling, which leads to brackish waters. Chilean alteration waters are three times more concentrated in average than Bolivian waters, which is related to a higher sulfur content in Chilean volcanoes. Brackish inflows stem from brines which leak out from present salars and mix with dilute groundwater. Most of the incoming salts are recycled salts. The cycling process is likely to have begun when ancient salars were buried by volcanic eruptions. Three major brine groups are found in Andean salars: alkaline, sulfate-rich, and calcium-rich brines. Evaporation modeling of inflows shows good agreement between predicted and observed brines in Chile. Alkaline salars are completely lacking in Chile, which is accounted for by higher sulfate and lower alkalinity of inflow waters, in turn related to the suspected higher sulfur content in Chilean volcanic rocks. Six Bolivian salars are alkaline, a lower number than that predicted by evaporative modeling. Deposition on the drainage basin of eolian sulfur eroded from native deposits shifts the initial alkaline evolution to sulfate brines. The occurrence of calcium-rich brines in Andean salars is not compatible with volcanic drainage basins, which can only produce alkaline or sulfate-rich weathering waters. The discrepancy is likely due to recycled calcic brines from ancient salars in sedimentary basins, now buried below volcanic formations. Calcic salars are not in equilibrium with their volcanic environment and may slowly change with time to sulfate-rich salars.


Central Andes Closed basin Hydrochemistry Salar Brine Salt recycling Brine evolution 



The study of Chilean salars was realized through a convention with the Direccion General de Aguas of Chile who provided most of the logistic support. We are also grateful to two anonymous reviewers for comments which significantly improved the manuscript.


  1. Al-Droubi A, Fritz B, Gac JY, Tardy Y (1980) Generalized residual alkalinity concept; application to prediction of the chemical evolution of natural waters by evaporation. Am J Sci 280:560–572Google Scholar
  2. Alonso H, Risacher F (1996) Geoquímica del salar de Atacama, parte 1: origen de los componentes y balance salino. Rev Geol Chile 23(2):113–122Google Scholar
  3. Alonso RN, Jordan TE, Tabbutt KT, Vandervoort DS (1991) Giant evaporite belts of the Neogene Central Andes. Geology 19:401–404. doi:10.1130/0091-7613(1991)019<0401:GEBOTN>2.3.CO;2CrossRefGoogle Scholar
  4. Alpers CN, Whittemore DO (1990) Hydrogeochemistry and stable isotopes of ground and surface waters from two adjacent closed basins, Atacama Desert, northern Chile. Appl Geochem 5:719–734. doi: 10.1016/0883-2927(90)90067-F CrossRefGoogle Scholar
  5. Badaut D, Risacher F (1983) Authigenic smectite on diatom frustules in Bolivian saline lakes. Geochim Cosmochim Acta 47:363–375. doi: 10.1016/0016-7037(83)90259-4 CrossRefGoogle Scholar
  6. Baker PA, Rigsby CA, Seltzer GO, Fritz SC, Lowenstein TK, Bacher NP, Veliz C (2001) Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature 409:698–701. doi: 10.1038/35055524 CrossRefGoogle Scholar
  7. Bao R, Sáez A, Servant-Vildary S, Cabrera L (1999) Lake-level and salinity reconstruction from diatom analyses in Quillagua formation (late Neogene, Central Andean forearc, northern Chile). Palaeogeogr Palaeoclimatol Palaeoecol 153:309–335. doi: 10.1016/S0031-0182(99)00066-8 CrossRefGoogle Scholar
  8. Berthold CE, Baker DH (1976) Lithium recovery from geothermal fluids. USGS Prof Pap 1005:61–66Google Scholar
  9. Bobst AL, Lowenstein TK, Jordan TE, Godfrey LV, Ku TH, Luo S (2001) A 106 ka paleoclimate record from drill core of the Salar de Atacama, northern Chile. Palaeogeogr Palaeoclim Palaeoecol 173(1–2):21–42Google Scholar
  10. Boschetti T, Cortecci G, Barbieri M, Mussi M (2007) New and past geochemical data on fresh to brine waters of the Salar de Atacama and Andean Altiplano, northern Chile. Geofluids 7:33–50. doi: 10.1111/j.1468-8123.2006.00159.x CrossRefGoogle Scholar
  11. Carmona V, Pueyo JJ, Taberner C, Chong G, Thirlwall M (2000) Solute inputs in the Salar de Atacama (N. Chile). J Geochem Explor 69–70:449–452. doi: 10.1016/S0375-6742(00)00128-X CrossRefGoogle Scholar
  12. Chong G (1984) Die Salare in Nordchile. Geologie, Struktur und Geochemie. Geotektonische Forschungen 67Google Scholar
  13. Chong G, Pueyo JJ, Demergasso C (2000) Los yacimientos de boratos de Chile. Rev Geol Chile 27(1):99–119CrossRefGoogle Scholar
  14. DGA (1987) Balance hídrico de Chile. Dirección General de Aguas, Ministerio de Obras Publicas, Santiago, ChileGoogle Scholar
  15. Dickson AG (1981) An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep-Sea Res 28A:609–623. doi: 10.1016/0198-0149(81)90121-7 CrossRefGoogle Scholar
  16. Dingman RJ (1962) Tertiary salt domes near San Pedro de Atacama, Chile. USGS Prof Pap 450–D:D92–D94Google Scholar
  17. Dingman RJ (1967) Geology and ground-water resources of the northern part of the salar de Atacama. Antofagasta Province, Chile. USGS Bull 1219Google Scholar
  18. Ericksen GE, Vine JD, Ballon R (1978) Chemical composition and distribution of lithium-rich brines in salar de Uyuni and nearby salars in southwestern Bolivia. Energy 3:355–363. doi: 10.1016/0360-5442(78)90032-4 CrossRefGoogle Scholar
  19. Eugster HP, Hardie LA (1978) Saline lakes. In: Lerman A (ed) Lakes: chemistry, geology, physics. Springer, New York, pp 238–293Google Scholar
  20. Eugster HP, Jones BF (1979) Behavior of major solutes during closed-basin brine evolution. Am J Sci 279:609–631Google Scholar
  21. Garcés I (2000a) Geochemistry of Huasco salar, Chile. Origin of solutes and brine evolution. In: Geertman RM (ed) Proceedings of the 8th world salt symposium, vol. 2. Elsevier Science, Amsterdam, pp1159–1160Google Scholar
  22. Garcés I (2000b) The sodium sulfate and ulexite deposits: salar of Surire, Chile. In: Geertman RM (ed) Proceedings of the 8th world salt symposium, vol. 2. Elsevier Science, Amsterdam, pp 1161–1162Google Scholar
  23. Garrels RM, Mackenzie FT (1967) Origin of the chemical composition of some springs and lakes. In: Equilibrium concepts in natural water systems. Advances in chemistry, vol 67. Amer Chem Soc, Washington DC, pp 222–242Google Scholar
  24. Gavrieli I, Starinsky A, Spiro B et al (1995) Mechanisms of sulfate removal from subsurface calcium chloride brines: Heletz-Kokhav oilfields, Israel. Geochim Cosmochim Acta 3525–3533. doi: 10.1016/0016-7037(95)00229-S
  25. Grosjean M (1994) Paleohydrology of the Laguna Lejia (north Chilean Altiplano) and climatic implications for late-glagial times. Palaeogeogr Palaeoclimatol Palaeoecol 109:89–100. doi: 10.1016/0031-0182(94)90119-8 CrossRefGoogle Scholar
  26. Grosjean M, van Leeuwen JFN, van der Knaap WO et al (2001) A 22, 000 14C year BP sediment and pollen record of climate change from Laguna Miscanti (23°S), northern Chile. Global Planet Change 28:35–51. doi: 10.1016/S0921-8181(00)00063-1 CrossRefGoogle Scholar
  27. Hardie LA, Eugster HP (1970) The evolution of closed-basin brines. Miner Soc Am Spec Pap 3:273–290Google Scholar
  28. Harvie CE, Moller N, Weare JH (1984) The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C. Geochim Cosmochim Acta 48:723–751. doi: 10.1016/0016-7037(84)90098-X CrossRefGoogle Scholar
  29. Hastenrath S, Kutzbach J (1985) Late Pleistocene climate and water budget of the South American Altiplano. Quat Res 24:249–256. doi: 10.1016/0033-5894(85)90048-1 CrossRefGoogle Scholar
  30. Kött A, Gaupp R, Wörner G (1995) Miocene to recent history of the western Altiplano in northern Chile revealed by lacustrine sediments of the Lauca basin. Geol Rundsch 84:770–780. doi: 10.1007/s005310050039 CrossRefGoogle Scholar
  31. Lerman A, Brunskill GJ (1971) Migration of major constituents from lake sediments into lake water and its bearing on lake water composition. Limnol Oceanogr 16:880–890CrossRefGoogle Scholar
  32. Lowenstein TK, Risacher F (2009) Closed basin brine evolution and the influence of Ca–Cl inflow waters: Death Valley and Bristol Dry Lake California, Qaidam Basin, China, and Salar de Atacama, Chile. Aquat Geochem. doi: 10.1007/s10498-008-9046-z
  33. Moraga A, Chong G, Fortt MA, Henriquez H (1974) Estudio geológico del salar de Atacama, Provincia de Antofagasta. Bol Inst Invest Geologicas Santiago Chil 29:1–56Google Scholar
  34. Pitzer KS (1979) Theory: ion interaction approach. In: Pytkowicz RM (ed) Activity coefficients in electrolyte solutions, vol 1. CRC Press, Boca Raton, Florida, pp 157–208Google Scholar
  35. Pueyo JJ, Chong G, Jensen A (2001) Neogene evaporites in desert volcanic environments: Atacama Desert, northern Chile. Sedimentology 48:1411–1431. doi: 10.1046/j.1365-3091.2001.00428.x CrossRefGoogle Scholar
  36. Rettig SL, Jones BF, Risacher F (1980) Geochemical evolution of brines in the salar of Uyuni, Bolivia. Chem Geol 30:57–79. doi: 10.1016/0009-2541(80)90116-3 CrossRefGoogle Scholar
  37. Risacher F (1984) Origine des concentrations extrêmes en bore et en lithium dans les saumures de l’Altiplano bolivien. C R Acad Sci, Paris 299(II, 11):701–706Google Scholar
  38. Risacher F, Alonso H (1996) Geoquímica del salar de Atacama, parte 2: Evolución de las aguas. Rev Geol Chile 23(2):123–134Google Scholar
  39. Risacher F, Clement A (2001) A computer program for the simulation of evaporation of natural waters to high concentration. Comput Geosci 27:191–201. doi: 10.1016/S0098-3004(00)00100-X CrossRefGoogle Scholar
  40. Risacher F, Fritz B (1991a) Quaternary geochemical evolution of the salars of Uyuni and Coipasa, central Altiplano, Bolivia. Chem Geol 90:211–231. doi: 10.1016/0009-2541(91)90101-V CrossRefGoogle Scholar
  41. Risacher F, Fritz B (1991b) Geochemistry of Bolivian salars, Lipez, southern Altiplano. Origin of solutes and brine evolution. Geochim Cosmochim Acta 55:687–705. doi: 10.1016/0016-7037(91)90334-2 CrossRefGoogle Scholar
  42. Risacher F, Fritz B (2000) Bromine geochemistry of Salar de Uyuni and deeper salt crusts, Central Altiplano, Bolivia. Chem Geol 167:373–392. doi: 10.1016/S0009-2541(99)00251-X CrossRefGoogle Scholar
  43. Risacher F, Alonso H, Salazar C (1999) Geoquímica de aguas en cuencas cerradas, I, II, III Regiones, Chile. Ministerio de Obras Públicas, Dirección General de Aguas, Technical Report S.I.T. no 51, Santiago, Chile.,
  44. Risacher F, Alonso H, Salazar C (2002) Hydrochemistry of two adjacent acid saline lakes in the Andes of northern Chile. Chem Geol 187:39–57. doi: 10.1016/S0009-2541(02)00021-9 CrossRefGoogle Scholar
  45. Risacher F, Alonso H, Salazar C (2003) The origin of brines and salts in Chilean salars: a hydrochemical review. Earth Sci Rev 63:249–293. doi: 10.1016/S0012-8252(03)00037-0 CrossRefGoogle Scholar
  46. Risacher F, Fritz B, Alonso H (2006) Non-conservative behavior of bromide in surface waters and brines of Central Andes: a release into the atmosphere? Geochim Cosmochim Acta 70:2143–2152. doi: 10.1016/j.gca.2006.01.019 CrossRefGoogle Scholar
  47. Sanford WE, Wood WW (1991) Brine evolution and mineral deposition in hydrologically open evaporite basins. Am J Sci 291:687–710Google Scholar
  48. Servant M, Fontes JC (1978) Les lacs quaternaires des hauts plateaux des Andes boliviennes. Premières interprétations paléoclimatiques. Cah ORSTOM, Ser Geol 10(1):9–23Google Scholar
  49. Spiro B, Chong G (1996) Origin of sulfate in the Salar de Atacama and the Cordillera de la Sal, initial results of an isotopic study. In: Proceedings of the third international symposium on andean geodynamics (ISAG), Saint Malo, France, Orstom Editions, Collection Colloques et Seminaires, Paris, pp 703–705Google Scholar
  50. Springer M, Förster A (1998) Heat-flow density across the Central Andean subduction zone. Tectonophysics 291:123–139. doi: 10.1016/S0040-1951(98)00035-3 CrossRefGoogle Scholar
  51. Stoertz GE, Ericksen GE (1974) Geology of salars in northern Chile. USGS Prof Pap 811Google Scholar
  52. Stumm W, Morgan JJ (1996) Aquatic chemistry. Chemical equilibria and rates in natural waters. Wiley Interscience, New YorkGoogle Scholar
  53. Sylvestre F, Servant M, Servant-Vildary et al (1999) Lake-level chronology on the southern Bolivian Altiplano (18°–23°S) during late-glacial time and the early Holocene. Quat Res 51:54–66. doi: 10.1006/qres.1998.2017 CrossRefGoogle Scholar
  54. Valero-Garcés BL, Grosjean M, Schwalb A et al (1996) Limnogeology of Laguna Miscanti: evidence for mid to late Holocene moisture changes in the Atacama Altiplano (Northern Chile). J Paleolimnol 16:1–21. doi: 10.1007/BF00173268 CrossRefGoogle Scholar
  55. Wardlaw GD, Valentine DL (2005) Evidence for salt diffusion from sediments contributing to increasing salinity in the Salton Sea, California. Hydrobiologia 533:77–85. doi: 10.1007/s10750-004-2395-8 CrossRefGoogle Scholar
  56. White AF, Claasen HC, Benson LV (1980) The effect of dissolution of volcanic glass on the water chemistry in a tuffaceous aquifer, Rainer Mesa, Nevada. USGS Water-Supply Pap 1535-QGoogle Scholar
  57. White DE, Hem JD, Waring GA (1963) Data of geochemistry. Chemical composition of subsurface waters. USGS Prof Pap 440-FGoogle Scholar
  58. White DE, Thompson JM, Fournier RO (1976) Lithium contents of thermal and mineral waters. USGS Prof Pap 1005:58–60Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.IRD-CNRS, Centre de Géochimie de la SurfaceStrasbourg CedexFrance
  2. 2.Université Louis Pasteur, Centre de Géochimie de la SurfaceStrasbourg CedexFrance
  3. 3.CNRS/INSUStrasbourg CedexFrance

Personalised recommendations