Skip to main content
Log in

Origin of Salts and Brine Evolution of Bolivian and Chilean Salars

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Central Andes in Bolivia and northern Chile contain numerous internal drainage basins occupied by saline lakes and salt crusts (salars). Salts in inflow waters stem from two origins: alteration of volcanic rocks, which produces dilute waters, and brine recycling, which leads to brackish waters. Chilean alteration waters are three times more concentrated in average than Bolivian waters, which is related to a higher sulfur content in Chilean volcanoes. Brackish inflows stem from brines which leak out from present salars and mix with dilute groundwater. Most of the incoming salts are recycled salts. The cycling process is likely to have begun when ancient salars were buried by volcanic eruptions. Three major brine groups are found in Andean salars: alkaline, sulfate-rich, and calcium-rich brines. Evaporation modeling of inflows shows good agreement between predicted and observed brines in Chile. Alkaline salars are completely lacking in Chile, which is accounted for by higher sulfate and lower alkalinity of inflow waters, in turn related to the suspected higher sulfur content in Chilean volcanic rocks. Six Bolivian salars are alkaline, a lower number than that predicted by evaporative modeling. Deposition on the drainage basin of eolian sulfur eroded from native deposits shifts the initial alkaline evolution to sulfate brines. The occurrence of calcium-rich brines in Andean salars is not compatible with volcanic drainage basins, which can only produce alkaline or sulfate-rich weathering waters. The discrepancy is likely due to recycled calcic brines from ancient salars in sedimentary basins, now buried below volcanic formations. Calcic salars are not in equilibrium with their volcanic environment and may slowly change with time to sulfate-rich salars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Al-Droubi A, Fritz B, Gac JY, Tardy Y (1980) Generalized residual alkalinity concept; application to prediction of the chemical evolution of natural waters by evaporation. Am J Sci 280:560–572

    Google Scholar 

  • Alonso H, Risacher F (1996) Geoquímica del salar de Atacama, parte 1: origen de los componentes y balance salino. Rev Geol Chile 23(2):113–122

    Google Scholar 

  • Alonso RN, Jordan TE, Tabbutt KT, Vandervoort DS (1991) Giant evaporite belts of the Neogene Central Andes. Geology 19:401–404. doi:10.1130/0091-7613(1991)019<0401:GEBOTN>2.3.CO;2

    Article  Google Scholar 

  • Alpers CN, Whittemore DO (1990) Hydrogeochemistry and stable isotopes of ground and surface waters from two adjacent closed basins, Atacama Desert, northern Chile. Appl Geochem 5:719–734. doi:10.1016/0883-2927(90)90067-F

    Article  Google Scholar 

  • Badaut D, Risacher F (1983) Authigenic smectite on diatom frustules in Bolivian saline lakes. Geochim Cosmochim Acta 47:363–375. doi:10.1016/0016-7037(83)90259-4

    Article  Google Scholar 

  • Baker PA, Rigsby CA, Seltzer GO, Fritz SC, Lowenstein TK, Bacher NP, Veliz C (2001) Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature 409:698–701. doi:10.1038/35055524

    Article  Google Scholar 

  • Bao R, Sáez A, Servant-Vildary S, Cabrera L (1999) Lake-level and salinity reconstruction from diatom analyses in Quillagua formation (late Neogene, Central Andean forearc, northern Chile). Palaeogeogr Palaeoclimatol Palaeoecol 153:309–335. doi:10.1016/S0031-0182(99)00066-8

    Article  Google Scholar 

  • Berthold CE, Baker DH (1976) Lithium recovery from geothermal fluids. USGS Prof Pap 1005:61–66

    Google Scholar 

  • Bobst AL, Lowenstein TK, Jordan TE, Godfrey LV, Ku TH, Luo S (2001) A 106 ka paleoclimate record from drill core of the Salar de Atacama, northern Chile. Palaeogeogr Palaeoclim Palaeoecol 173(1–2):21–42

    Google Scholar 

  • Boschetti T, Cortecci G, Barbieri M, Mussi M (2007) New and past geochemical data on fresh to brine waters of the Salar de Atacama and Andean Altiplano, northern Chile. Geofluids 7:33–50. doi:10.1111/j.1468-8123.2006.00159.x

    Article  Google Scholar 

  • Carmona V, Pueyo JJ, Taberner C, Chong G, Thirlwall M (2000) Solute inputs in the Salar de Atacama (N. Chile). J Geochem Explor 69–70:449–452. doi:10.1016/S0375-6742(00)00128-X

    Article  Google Scholar 

  • Chong G (1984) Die Salare in Nordchile. Geologie, Struktur und Geochemie. Geotektonische Forschungen 67

  • Chong G, Pueyo JJ, Demergasso C (2000) Los yacimientos de boratos de Chile. Rev Geol Chile 27(1):99–119

    Article  Google Scholar 

  • DGA (1987) Balance hídrico de Chile. Dirección General de Aguas, Ministerio de Obras Publicas, Santiago, Chile

    Google Scholar 

  • Dickson AG (1981) An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep-Sea Res 28A:609–623. doi:10.1016/0198-0149(81)90121-7

    Article  Google Scholar 

  • Dingman RJ (1962) Tertiary salt domes near San Pedro de Atacama, Chile. USGS Prof Pap 450–D:D92–D94

    Google Scholar 

  • Dingman RJ (1967) Geology and ground-water resources of the northern part of the salar de Atacama. Antofagasta Province, Chile. USGS Bull 1219

  • Ericksen GE, Vine JD, Ballon R (1978) Chemical composition and distribution of lithium-rich brines in salar de Uyuni and nearby salars in southwestern Bolivia. Energy 3:355–363. doi:10.1016/0360-5442(78)90032-4

    Article  Google Scholar 

  • Eugster HP, Hardie LA (1978) Saline lakes. In: Lerman A (ed) Lakes: chemistry, geology, physics. Springer, New York, pp 238–293

    Google Scholar 

  • Eugster HP, Jones BF (1979) Behavior of major solutes during closed-basin brine evolution. Am J Sci 279:609–631

    Google Scholar 

  • Garcés I (2000a) Geochemistry of Huasco salar, Chile. Origin of solutes and brine evolution. In: Geertman RM (ed) Proceedings of the 8th world salt symposium, vol. 2. Elsevier Science, Amsterdam, pp1159–1160

  • Garcés I (2000b) The sodium sulfate and ulexite deposits: salar of Surire, Chile. In: Geertman RM (ed) Proceedings of the 8th world salt symposium, vol. 2. Elsevier Science, Amsterdam, pp 1161–1162

  • Garrels RM, Mackenzie FT (1967) Origin of the chemical composition of some springs and lakes. In: Equilibrium concepts in natural water systems. Advances in chemistry, vol 67. Amer Chem Soc, Washington DC, pp 222–242

  • Gavrieli I, Starinsky A, Spiro B et al (1995) Mechanisms of sulfate removal from subsurface calcium chloride brines: Heletz-Kokhav oilfields, Israel. Geochim Cosmochim Acta 3525–3533. doi:10.1016/0016-7037(95)00229-S

  • Grosjean M (1994) Paleohydrology of the Laguna Lejia (north Chilean Altiplano) and climatic implications for late-glagial times. Palaeogeogr Palaeoclimatol Palaeoecol 109:89–100. doi:10.1016/0031-0182(94)90119-8

    Article  Google Scholar 

  • Grosjean M, van Leeuwen JFN, van der Knaap WO et al (2001) A 22, 000 14C year BP sediment and pollen record of climate change from Laguna Miscanti (23°S), northern Chile. Global Planet Change 28:35–51. doi:10.1016/S0921-8181(00)00063-1

    Article  Google Scholar 

  • Hardie LA, Eugster HP (1970) The evolution of closed-basin brines. Miner Soc Am Spec Pap 3:273–290

    Google Scholar 

  • Harvie CE, Moller N, Weare JH (1984) The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C. Geochim Cosmochim Acta 48:723–751. doi:10.1016/0016-7037(84)90098-X

    Article  Google Scholar 

  • Hastenrath S, Kutzbach J (1985) Late Pleistocene climate and water budget of the South American Altiplano. Quat Res 24:249–256. doi:10.1016/0033-5894(85)90048-1

    Article  Google Scholar 

  • Kött A, Gaupp R, Wörner G (1995) Miocene to recent history of the western Altiplano in northern Chile revealed by lacustrine sediments of the Lauca basin. Geol Rundsch 84:770–780. doi:10.1007/s005310050039

    Article  Google Scholar 

  • Lerman A, Brunskill GJ (1971) Migration of major constituents from lake sediments into lake water and its bearing on lake water composition. Limnol Oceanogr 16:880–890

    Article  Google Scholar 

  • Lowenstein TK, Risacher F (2009) Closed basin brine evolution and the influence of Ca–Cl inflow waters: Death Valley and Bristol Dry Lake California, Qaidam Basin, China, and Salar de Atacama, Chile. Aquat Geochem. doi:10.1007/s10498-008-9046-z

  • Moraga A, Chong G, Fortt MA, Henriquez H (1974) Estudio geológico del salar de Atacama, Provincia de Antofagasta. Bol Inst Invest Geologicas Santiago Chil 29:1–56

    Google Scholar 

  • Pitzer KS (1979) Theory: ion interaction approach. In: Pytkowicz RM (ed) Activity coefficients in electrolyte solutions, vol 1. CRC Press, Boca Raton, Florida, pp 157–208

    Google Scholar 

  • Pueyo JJ, Chong G, Jensen A (2001) Neogene evaporites in desert volcanic environments: Atacama Desert, northern Chile. Sedimentology 48:1411–1431. doi:10.1046/j.1365-3091.2001.00428.x

    Article  Google Scholar 

  • Rettig SL, Jones BF, Risacher F (1980) Geochemical evolution of brines in the salar of Uyuni, Bolivia. Chem Geol 30:57–79. doi:10.1016/0009-2541(80)90116-3

    Article  Google Scholar 

  • Risacher F (1984) Origine des concentrations extrêmes en bore et en lithium dans les saumures de l’Altiplano bolivien. C R Acad Sci, Paris 299(II, 11):701–706

    Google Scholar 

  • Risacher F, Alonso H (1996) Geoquímica del salar de Atacama, parte 2: Evolución de las aguas. Rev Geol Chile 23(2):123–134

    Google Scholar 

  • Risacher F, Clement A (2001) A computer program for the simulation of evaporation of natural waters to high concentration. Comput Geosci 27:191–201. doi:10.1016/S0098-3004(00)00100-X

    Article  Google Scholar 

  • Risacher F, Fritz B (1991a) Quaternary geochemical evolution of the salars of Uyuni and Coipasa, central Altiplano, Bolivia. Chem Geol 90:211–231. doi:10.1016/0009-2541(91)90101-V

    Article  Google Scholar 

  • Risacher F, Fritz B (1991b) Geochemistry of Bolivian salars, Lipez, southern Altiplano. Origin of solutes and brine evolution. Geochim Cosmochim Acta 55:687–705. doi:10.1016/0016-7037(91)90334-2

    Article  Google Scholar 

  • Risacher F, Fritz B (2000) Bromine geochemistry of Salar de Uyuni and deeper salt crusts, Central Altiplano, Bolivia. Chem Geol 167:373–392. doi:10.1016/S0009-2541(99)00251-X

    Article  Google Scholar 

  • Risacher F, Alonso H, Salazar C (1999) Geoquímica de aguas en cuencas cerradas, I, II, III Regiones, Chile. Ministerio de Obras Públicas, Dirección General de Aguas, Technical Report S.I.T. no 51, Santiago, Chile. http://www.chile.ird.fr/spip.php?page=article_publications&id_article=2056, http://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_7/divers2/010019475.pdf

  • Risacher F, Alonso H, Salazar C (2002) Hydrochemistry of two adjacent acid saline lakes in the Andes of northern Chile. Chem Geol 187:39–57. doi:10.1016/S0009-2541(02)00021-9

    Article  Google Scholar 

  • Risacher F, Alonso H, Salazar C (2003) The origin of brines and salts in Chilean salars: a hydrochemical review. Earth Sci Rev 63:249–293. doi:10.1016/S0012-8252(03)00037-0

    Article  Google Scholar 

  • Risacher F, Fritz B, Alonso H (2006) Non-conservative behavior of bromide in surface waters and brines of Central Andes: a release into the atmosphere? Geochim Cosmochim Acta 70:2143–2152. doi:10.1016/j.gca.2006.01.019

    Article  Google Scholar 

  • Sanford WE, Wood WW (1991) Brine evolution and mineral deposition in hydrologically open evaporite basins. Am J Sci 291:687–710

    Google Scholar 

  • Servant M, Fontes JC (1978) Les lacs quaternaires des hauts plateaux des Andes boliviennes. Premières interprétations paléoclimatiques. Cah ORSTOM, Ser Geol 10(1):9–23

    Google Scholar 

  • Spiro B, Chong G (1996) Origin of sulfate in the Salar de Atacama and the Cordillera de la Sal, initial results of an isotopic study. In: Proceedings of the third international symposium on andean geodynamics (ISAG), Saint Malo, France, Orstom Editions, Collection Colloques et Seminaires, Paris, pp 703–705

  • Springer M, Förster A (1998) Heat-flow density across the Central Andean subduction zone. Tectonophysics 291:123–139. doi:10.1016/S0040-1951(98)00035-3

    Article  Google Scholar 

  • Stoertz GE, Ericksen GE (1974) Geology of salars in northern Chile. USGS Prof Pap 811

  • Stumm W, Morgan JJ (1996) Aquatic chemistry. Chemical equilibria and rates in natural waters. Wiley Interscience, New York

    Google Scholar 

  • Sylvestre F, Servant M, Servant-Vildary et al (1999) Lake-level chronology on the southern Bolivian Altiplano (18°–23°S) during late-glacial time and the early Holocene. Quat Res 51:54–66. doi:10.1006/qres.1998.2017

    Article  Google Scholar 

  • Valero-Garcés BL, Grosjean M, Schwalb A et al (1996) Limnogeology of Laguna Miscanti: evidence for mid to late Holocene moisture changes in the Atacama Altiplano (Northern Chile). J Paleolimnol 16:1–21. doi:10.1007/BF00173268

    Article  Google Scholar 

  • Wardlaw GD, Valentine DL (2005) Evidence for salt diffusion from sediments contributing to increasing salinity in the Salton Sea, California. Hydrobiologia 533:77–85. doi:10.1007/s10750-004-2395-8

    Article  Google Scholar 

  • White AF, Claasen HC, Benson LV (1980) The effect of dissolution of volcanic glass on the water chemistry in a tuffaceous aquifer, Rainer Mesa, Nevada. USGS Water-Supply Pap 1535-Q

  • White DE, Hem JD, Waring GA (1963) Data of geochemistry. Chemical composition of subsurface waters. USGS Prof Pap 440-F

  • White DE, Thompson JM, Fournier RO (1976) Lithium contents of thermal and mineral waters. USGS Prof Pap 1005:58–60

    Google Scholar 

Download references

Acknowledgments

The study of Chilean salars was realized through a convention with the Direccion General de Aguas of Chile who provided most of the logistic support. We are also grateful to two anonymous reviewers for comments which significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Risacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Risacher, F., Fritz, B. Origin of Salts and Brine Evolution of Bolivian and Chilean Salars. Aquat Geochem 15, 123–157 (2009). https://doi.org/10.1007/s10498-008-9056-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-008-9056-x

Keywords

Navigation