Skip to main content

Advertisement

Log in

Isotopic Evolution of Saline Lakes in the Low-Latitude and Polar Regions

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Isotopic fractionations associated with two primary processes (evaporation and freezing of water) are discussed, which are responsible for the formation and evolution of saline lakes in deserts from both low-latitude and the Polar regions. In an evaporative system, atmospheric parameters (humidity and isotopic composition of water vapor) have strong influence on the isotopic behavior of saline lakes, and in a freezing system, salinity build-up largely controls the extent of freezing and associated isotope fractionation. In both systems, salinity has a direct impact on the isotopic evolution of saline lakes. It is proposed that a steady-state “terminal lake” model with short-term hydrologic and environmental perturbations can serve as a useful framework for investigating both evaporative and freezing processes of perennial saline lakes. Through re-assessment of own work and literature data for saline lakes, it was demonstrated that effective uses of the isotope activity compositions of brines and salinity-chemistry data could reveal dynamic changes and evolution in the isotopic compositions of saline lakes in response to hydrologic and environmental changes. The residence time of isotopic water molecules in lakes determines the nature of responses in the isotopic compositions following perturbations in the water and isotope balances (e.g., dilution by inflow, water deficit by increased evaporation, and/or reduction in inflow). The isotopic profiles of some saline lakes from the Polar regions show that they switched the two contrasting modes of operation between evaporative and freezing systems, in response to climate and hydrological changes in the past.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Anati DA, Gat JR (1989) Restricted marine basins and marginal sea environments. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry 3: the marine environment A. Elsevier, Amsterdam, pp 29–73

    Google Scholar 

  • Anati DA, Stiller M, Shasha S, Gat JR (1987) Changes in the thermo-haline structure of the Dead-Sea—1979–1984. Earth Planet Sci Lett 84(1):109–121

    Article  Google Scholar 

  • Bird MI, Chivas AR, Radnell CJ, Burton HR (1991) Sedimentological and stable-isotope evolution of lakes in the Vestfold Hills, Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 84(1–4):109–130

    Article  Google Scholar 

  • Burton HR (1981) Chemistry, physics and evolution of Antarctic saline lakes—a review. Hydrobiologia 81–82(JUN):339–362

    Article  Google Scholar 

  • Campbell IB, Claridge GGC, Campbell DI, Balks MR (1998) The soil environment of the McMurdo Dry Valleys, Antarctica. In: Priscu JC (ed) Ecosystem dynamics in a Polar desert: the McMurdo Dry Valleys, Antarctica. American Geophysical Union, Washington, pp 297–322

    Google Scholar 

  • Chinn TJ (1993) Physical hydrology of the dry valley lakes. In: Green WJ Jr, Friedmann EI (eds) Physical and biogeochemical processes in Antarctic lakes. American Geophysical Union, Washington, pp 1–51

    Google Scholar 

  • Clow GD, McKay CP, Simmons GM Jr, Wharton RA Jr (1988) Climatological observations and predicted sublimation rates at Lake Hoare, Antarctica. J Clim 1:715–728

    Article  Google Scholar 

  • Craig H, Gordon LI (1965) Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In: Tongiorgi E (ed) Stable isotopes in oceanographic studies and paleotemperatures. Laboratorio di Geologia Nucleare, Pisa, pp 9–130

    Google Scholar 

  • Doran PT, McKay CP, Clow GD, Dana GL, Fountain AG, Nylen T, Lyons WB (2002) Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986–2000. J Geophys Res Atmos 107(D24):1–12

    Google Scholar 

  • Eugster HP, Hardie LA (1978) Saline lakes. In: Lerman A (ed) Lakes: chemistry, geology, physics. Springer-Verlag, New York, pp 237–293

    Google Scholar 

  • Ferrick MG, Calkins DJ, Perron NM, Cragin JH, Kendall C (2002) Diffusion model validation and interpretation of stable isotopes in river and lake ice. Hydrol Process 16(4):851–872

    Article  Google Scholar 

  • Fontes JC, Gonfiantini R (1967) Comportement isotopique au cours de l’evaporation de deux bassins Sahariens. Earth Planet Sci Lett 3:258–266

    Article  Google Scholar 

  • Gallagher JB, Burton HR, Calf GE (1989) Meromixis in an Antarctic fjord—a precursor to meromictic lakes on an isostatically rising coastline. Hydrobiologia 172:235–254

    Article  Google Scholar 

  • Gat JR (1979) Isotope hydroglogy of very saline surface waters, isotopes in lake studies. IAEA, Vienna, pp 151–162

    Google Scholar 

  • Gat JR (1984) The stable isotope composition of Dead-Sea waters. Earth Planet Sci Lett 71(2):361–376

    Article  Google Scholar 

  • Gat JR (1995) Stable isotopes of fresh and saline lakes. In: Lerman A, Imboden D, Gat JR (eds) Physics and chemistry of lakes. Springer, New York, pp 139–165

    Google Scholar 

  • Gibson JAE (1999) The meromictic lakes and stratified marine basins of the Vestfold Hills, East Antarctica. Antarct Sci 11(2):175–192

    Article  Google Scholar 

  • Gibson JJ, Prowse TD (1999) Isotopic characteristics of ice cover in a large northern river basin. Hydrol Process 13(16):2537–2548

    Article  Google Scholar 

  • Gonfiantini R (1965) Effetti isotopici nell’evaporazione di acque salate. Atti Soc Toscana Sci Nat Pisa Ser A 72:550–569

    Google Scholar 

  • Gonfiantini R (1986) Environmental isotopes in lake studies. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry, volume 2. The terrestrial environment, B. Elsevier, Amsterdam, pp 113–168

    Google Scholar 

  • Gooseff MN, McKnight DM, Runke RL, Vaughn BH (2003) Determining long time-scale hyporheic zone flow paths in Antarctic streams. Hydrol Process 17(9):1691–1710

    Article  Google Scholar 

  • Gooseff MN, Lyons WB, McKnight DM, Vaughn BH, Fountain AG, Dowling C (2006) A stable isotopic investigation of a polar desert hydrologic system, McMurdo Dry Valleys, Antarctica. Arct Antarct Alp Res 38(1):60–71

    Article  Google Scholar 

  • Green WJ Jr, Friedmann EI (1993) Physical and biogeochemical processes in Antarctic Lakes. Antarctic research series. American Geophysical Union, Washington, 216 pp

  • Green WJ Jr, Lyons WB (this issue) The saline lakes of the McMurdo Dry Valleys, Antarctica. Aquat Geochem

  • Harris HJ, Cartwright K (1981) Hydrology of the Don Juan Basin, Wright Valley, Antarctica. In: McGinnis LD (ed) Dry valley drilling project. American Geophysical Union, Washington, pp 161–184

    Google Scholar 

  • Hendy CH (2000) Late quaternary lakes in the McMurdo sound region of Antarctica. Geogr Ann Ser a Phys Geogr 82A(2–3):411–432

    Google Scholar 

  • Hendy CH, Wilson AT, Popplewell KB, House DA (1977) Dating of geochemical events in Lake Bonney, Antarctica, and their relation to glacial and climate changes. NZ J Geol Geophys 20(6):1103–1122

    Google Scholar 

  • Hermichen WD, Kowski P, Wand U (1985) Lake Untersee, a 1st isotope study of the largest fresh-water lake in the interior of East Antarctica. Nature 315(6015):131–133

    Article  Google Scholar 

  • Horita J (1988) Hydrogen isotope analysis of natural-waters using an H2–water equilibration method—a special implication to brines. Chem Geol 72(1):89–94

    Google Scholar 

  • Horita J (1989) Analytical aspects of stable isotopes in brines. Chem Geol 79(2):107–112

    Google Scholar 

  • Horita J (1990) Stable isotope paleoclimatology of brine inclusions in Halite—modeling and application to Searles Lake, California. Geochim Cosmochim Acta 54(7):2059–2073

    Article  Google Scholar 

  • Horita J (2005) Saline waters. In: Aggarwal PK, Gat JR, Froehlich KF (eds) Isotopes in the water cycle: past, present and future of a developing science. Springer, New York, pp 271–287

    Google Scholar 

  • Horita J, Gat JR (1988) Procedure for the hydrogen isotope analysis of water from concentrated brines. Chem Geol 72(1):85–88

    Google Scholar 

  • Horita J, Gat JR (1989) Deuterium in the Dead-Sea—remeasurement and implications for the isotopic activity correction in brines. Geochim Cosmochim Acta 53(1):131–133

    Article  Google Scholar 

  • Horita J, Cole DR, Wesolowski DJ (1993a) The activity–composition relationship of oxygen and hydrogen isotopes in aqueous salt-solutions. 2. Vapor–liquid water equilibration of mixed salt-solutions from 50 to 100°C and geochemical implications. Geochim Cosmochim Acta 57(19):4703–4711

    Article  Google Scholar 

  • Horita J, Wesolowski DJ, Cole DR (1993b) The activity–composition relationship of oxygen and hydrogen isotopes in aqueous salt-solutions. 1. Vapor–liquid water equilibration of single salt-solutions from 50°C to 100°C. Geochim Cosmochim Acta 57(12):2797–2817

    Article  Google Scholar 

  • Horita J, Cole DR, Wesolowski DJ (1995) The activity composition relationship of oxygen and hydrogen isotopes in aqueous salt-solutions. 3. Vapor liquid water equilibration of Nacl solutions to 350°C. Geochim Cosmochim Acta 59(6):1139–1151

    Article  Google Scholar 

  • Horita J, Rozanski K, Cohen S (2008) Isotope effects in the evaporation of water: a status report of the Craig–Gordon model. Isotopes Environ Health Stud 44(1):23–49

    Article  Google Scholar 

  • Lehmann M, Siegenthaler U (1991) Equilibrium oxygen-isotope and hydrogen-isotope fractionation between ice and water. J Glaciol 37(125):23–26

    Google Scholar 

  • Lloyd RM (1966) Oxygen isotope enrichment of sea water by evaporation. Geochim Cosmochim Acta 30(8):801–814

    Article  Google Scholar 

  • Lyons WB, Tyler SW, Wharton RA, McKnight DM, Vaughn BH (1998a) A late holocene desiccation of Lake Hoare and Lake Fryxell, McMurdo Dry Valleys, Antarctica. Antarct Sci 10(3):247–256

    Article  Google Scholar 

  • Lyons WB, Welch KA, Neumann K, Toxey JK, McArthur R, Williams C (1998b) Geochemical linkages among glaciers, streams and lakes within the Taylor Valley, Antarctica. In: Prison JC (ed) Ecosystem dynamics in a Polar desert: the McMurdo Dry Valleys, Antarctica. American Geophysical Union, Washington, pp 77–92

    Google Scholar 

  • Lyons WB, Welch KA, Sharma P (1998c) Chlorine-36 in the waters of the McMurdo Dry Valley lakes, southern Victoria Land, Antarctica: revisited. Geochim Cosmochim Acta 62(2):185–191

    Article  Google Scholar 

  • Lyons WB, Welch KA, Snyder G, Olesik J, Graham EY, Marion GM, Poreda RJ (2005) Halogen geochemistry of the McMurdo Dry Valleys lakes, Antarctica: clues to the origin of solutes and lake evolution. Geochim Cosmochim Acta 69(2):305–323

    Article  Google Scholar 

  • Marion GM, Farren RE, Komrowski AJ (1999) Alternative pathways for seawater freezing. Cold Reg Sci Technol 29(3):259–266

    Article  Google Scholar 

  • Matsubaya O, Torii T, Burton H, Kerry K, Sakai H (1979) Antarctic saline lakes—stable isotopic ratios, chemical compositions and evolution. Geochim Cosmochim Acta 43(1):7–25

    Article  Google Scholar 

  • McKay CP, Clow GD, Wharton RA, Squyres SW (1985) Thickness of ice on perennially frozen lakes. Nature 313(6003):561–562

    Article  Google Scholar 

  • Michel FA (1986) Isotope geochemistry of Frost-Blister Ice, North Fork Pass, Yukon, Canada. Can J Earth Sci 23(4):543–549

    Google Scholar 

  • Miller LG, Aiken GR (1996) Effects of glacial meltwater inflows and moat freezing on mixing in an ice-covered antarctic lake as interpreted from stable isotope and tritium distributions. Limnol Oceanogr 41(5):966–976

    Google Scholar 

  • Nakai N, Wada H, Kiyosu Y, Takimoto M (1975) Stable isotope studies on the origin and geological history of water and salts in the Lake Vanda area, Antarctica. Geochem J 9:7–24

    Google Scholar 

  • Ouellet M, Dickman M, Bisson M, Page P (1989) Physicochemical characteristics and origin of hypersaline meromictic Lake Garrow in the Canadian High Arctic. Hydrobiologia 172:215–234

    Article  Google Scholar 

  • Page P, Ouellet M, Hillairemarcel C, Dickman M (1984) Isotopic analyses (O-18, C-13, C-14) of 2 meromictic lakes in the Canadian Arctic Archipelago. Limnol Oceanogr 29(3):564–573

    Article  Google Scholar 

  • Page P, Michaud J, Ouellet M, Dickman M (1987) Isotopic composition and origin of lacustrine brines in the Arctic. Can J Earth Sci 24(2):210–216

    Article  Google Scholar 

  • Pierre C (1989) Sedimentation and diagenesis in restricted marine basins. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry. Elsevier, Amsterdam, pp 257–315

    Google Scholar 

  • Poreda RJ, Hunt AG, Lyons WB, Welch KA (2004) The helium isotopic chemistry of Lake Bonney, Taylor Valley, Antarctica: timing of late Holocene climate change in Antarctica. Aquat Geochem 10(3–4):353–371

    Article  Google Scholar 

  • Ragotzkie RA (1978) Heat budgets of lakes. In: Lerman A (ed) Lakes: chemistry, geology, physics. Springer, New York, pp 1–19

    Google Scholar 

  • Ragotzkie RA, Friedman I (1965) Low deuterium content of Lake Vanda, Antarctica. Science 148:1226–1227

    Article  Google Scholar 

  • Richter W, Strauch G (1983) Deuterium and O-18 variations in lakes of the Schirmacher Oasis (East-Antarctica). Isotopenpraxis 19(5):145–153

    Google Scholar 

  • Sofer Z, Gat JR (1972) Activities and concentrations of O-18 in concentrated aqueous salt solutions—analytical and geophysical implications. Earth Planet Sci Lett 15(3):232–238

    Article  Google Scholar 

  • Sofer Z, Gat JR (1975) Isotope composition of evaporating brines—effect of isotopic activity ratio in saline solutions. Earth Planet Sci Lett 26(2):179–186

    Article  Google Scholar 

  • Souchez R, Tison JL, Jouzel J (1987) Freezing rate determination by the isotopic composition of the ice. Geophys Res Lett 14(6):599–602

    Article  Google Scholar 

  • Spigel RH, Priscu JC (1998) Physical limnology of the McMurdo Dry Valleys lake. In: Priscu JC (ed) Ecosystem dynamics in a Polar desert: the McMurdo Dry Valleys, Antarctica. American Geophysical Union, Washington, pp 153–187

    Google Scholar 

  • Stark SC, O’Grady BV, Burton HR, Carpenter D (2003) Frigidly concentrated seawater and the evolution of Antarctic saline lakes. Aust J Chem 56(2–3):181–186

    Article  Google Scholar 

  • Stewart MK (1974) Hydrogen and oxygen isotope fractionation during crystallization of mirabilite and ice. Geochim Cosmochim Acta 38(1):167–172

    Article  Google Scholar 

  • Stiller M, Gat JR, Bauman N, Shasha S (1984) A short meromictic episode in the Dead Sea: 1979–1982. Verh Internat Verein Limnol 22:132–135

    Google Scholar 

  • Thompson TG, Nelson KH (1956) Concentration of brines and deposition of salts from sea water under frigid conditions. Am J Sci 254:227–238

    Google Scholar 

  • Tominaga H, Fukui F (1981) Saline lakes at Syowa-Oasis, Antarctica. Hydrobiologia 81–82(JUN):375–389

    Article  Google Scholar 

  • Torii T, Yamagata N (1981) Limnological studies of saline lakes in the dry valleys. In: McGinnis LD (ed) Dry valley drilling project. American Geophysical Union, Washington, pp 141–159

    Google Scholar 

  • Torii T, Nakaya S, Matsubaya O, Matsumoto GI, Masuda N, Kawano T, Murayama H (1989) Chemical characteristics of pond waters in the labyrinth of southern Victoria Land, Antarctica. Hydrobiologia 172:255–264

    Article  Google Scholar 

  • Van Hove P, Belzile C, Gibson JAE, Vincent WF (2006) Coupled landscape-lake evolution in High Arctic Canada. Can J Earth Sci 43(5):533–546

    Article  Google Scholar 

  • Wang YQ, Chen XB, Meng GL, Wang SQ, Wang ZY (2000) On changing trends of δD during seawater freezing and evaporation. Cold Reg Sci Technol 31(1):27–31

    Article  Google Scholar 

  • Wilson AT (1979) Geochemical problems of the Antarctic dry areas. Nature 280(5719):205–208

    Article  Google Scholar 

  • Zwartz D, Bird M, Stone J, Lambeck K (1998) Holocene sea-level change and ice-sheet history in the Vestfold Hills, East Antarctica. Earth Planet Sci Lett 155(1–2):131–145

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to Berry Lyons, and an anonymous reviewer for their comments. Research was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy under contract DE-AC05-00OR22725, Oak Ridge National Laboratory, managed by UT-Battle, LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juske Horita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horita, J. Isotopic Evolution of Saline Lakes in the Low-Latitude and Polar Regions. Aquat Geochem 15, 43–69 (2009). https://doi.org/10.1007/s10498-008-9050-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-008-9050-3

Keywords

Navigation