Aquatic Geochemistry

, Volume 15, Issue 1–2, pp 71–94 | Cite as

Closed Basin Brine Evolution and the Influence of Ca–Cl Inflow Waters: Death Valley and Bristol Dry Lake California, Qaidam Basin, China, and Salar de Atacama, Chile

  • Tim K. LowensteinEmail author
  • François Risacher
Original Paper


Diagenetic-hydrothermal brines, here called “hydrothermal Ca–Cl brines,” have compositions that reflect interactions between groundwaters and rocks or sediments at elevated temperatures. Hydrothermal Ca–Cl brines reach the surface by convection-driven or topographically driven circulation, and discharge as springs or seeps along fault zones to become important inflow waters in many tectonically active closed basins. Case studies from (1) Qaidam Basin, China, (2) Death Valley, California, (3) Salar de Atacama, Chile, and (4) Bristol Dry Lake, California illustrate that hydrothermal Ca–Cl inflow waters have influenced brine evolution in terms of major ion chemistries and mineral precipitation sequences. All four basins are tectonically active; three (Death Valley, Salar de Atacama, and Qaidam Basin) have well-documented Ca–Cl spring inflow and Holocene faulting. Bristol Dry Lake has young volcanic deposits and Salar de Atacama has an active stratovolcano on its eastern margin, indicating subsurface magma bodies. A midcrustal magma chamber has been identified in southern Death Valley. Volcanism and faulting in these closed basins provides the heat source for hydrothermal-diagenetic processes and the energy and pathways to deliver these waters to the surface.


Closed basins Brine evolution Chemical divide Qaidam Basin Death Valley Salar de Atacama Bristol Dry Lake Ca–Cl inflow waters 



We thank two anonymous reviewers, Andrew Bobst, Linda Godfrey, Joseph Smoot, and Michael Rosen for their thoughtful comments.


  1. Alonso H, Risacher F (1996) Geoquimica del Salar de Atacama, parte 1: origen de los componentes y balance salino. Rev Geol Chil 23:113–122Google Scholar
  2. Alt JC (1995) Subseafloor processes in mid-ocean ridge hydrothermal systems. In: Humphris SE et al (eds) Seafloor hydrothermal systems. American Geophysical Union, Washington, DC, pp 85–114Google Scholar
  3. Berner EK, Berner RA (1996) Global environment: water, air, and geochemical cycles. Prentice Hall, Upper Saddle River, New JerseyGoogle Scholar
  4. Bevacqua P (1991) Geomorfología del Salar de Atacama y estratigrafía de su nucleo y delta, segunda región de Antofagasta, Chile (Geomorphology of the Salar de Atacama, and stratigraphy of the nucleus and delta; Second region of Antofagasta, Chile). Ph.D. Thesis, Universidad Católica del Norte, Chile, 251 pGoogle Scholar
  5. Bevacqua P (1995) Lacustrine deposits in the Preandean Atacama basin: The Salar de Atacama, In: Sáez A (ed) Cenozoic and quaternary lacustrine systems in northern Chile (Central Andes, Arc and Fore-arc Zones). Excursion guidebook: global palaeoenvironmental archives in lacustrine systems-international association of sedimentologists meeting (GLOPALS-IAS Meeting), Antofagasta, Chile, pp 47–62Google Scholar
  6. Bobst AL, Lowenstein TK, Jordan TE, Godfrey LV, Ku T-L, Luo S (2001) A 106 ka paleoclimate record from drill core of the Salar de Atacama, northern Chile. Palaeogeogr Palaeoclimatol Palaeoecol 173:21–42. doi: 10.1016/S0031-0182(01)00308-X CrossRefGoogle Scholar
  7. Boschetti T, Cortecci G, Barbieri M, Mussi M (2007) New and past geochemical data on fresh to brine waters of the Salar de Atacama and Andean Altiplano, northern Chile. Geofluids 7:33–50. doi: 10.1111/j.1468-8123.2006.00159.x CrossRefGoogle Scholar
  8. Burchfiel BC, Stewart JH (1966) “Pull-apart” origin of the central segment of Death Valley, California. Geol Soc Am Bull 77:439–442. doi: 10.1130/0016-7606(1966)77[439:POOTCS]2.0.CO;2 CrossRefGoogle Scholar
  9. Carmona V, Pueyo JJ, Taberner C, Chong G, Thirlwall M (2000) Solute inputs in the Salar de Atacama (N. Chile). J Geochem Explor 69–70:449–452. doi: 10.1016/S0375-6742(00)00128-X CrossRefGoogle Scholar
  10. Carpenter AB (1978) Origin and chemical evolution of brines in sedimentary basins. In: Johnson KS and Russell JR (eds) 13th industrial minerals forum Oklahoma geological survey circular, Norman, Oklahma, 79, pp 60–77Google Scholar
  11. Casas E, Lowenstein TK, Spencer RJ, Zhang P (1992) Carnallite mineralization in the nonmarine Qaidam Basin, China: evidence for the early diagenetic origin of potash evaporites. J Sediment Petrol 62:881–898Google Scholar
  12. Chen W-P, Chen C-Y, Nábelek JL (1999) Present-day deformation of the Qaidam basin with implications for intra-continental tectonics. Tectonophysics 305:165–181. doi: 10.1016/S0040-1951(99)00006-2 CrossRefGoogle Scholar
  13. de Voogd B, Serpa L, Brown L, Hauser E, Kaufman S, Oliver J, Troxel BW, Willemin J, Wright LA (1986) Death Valley bright spot: a midcrustal magma body in the southern Great Basin, California? Geology 14:64–67 doi: 10.1130/0091-7613(1986)14<64:DVBSAM>2.0.CO;2CrossRefGoogle Scholar
  14. Drever JI (1988) The geochemistry of natural waters, 2nd edn. Prentice Hall, Upper Saddle River, New JerseyGoogle Scholar
  15. Eugster HP, Hardie LA (1978) Saline Lakes. In: Lerman A (ed) Lakes chemistry, geology, physics. Springer-Verlag, New York, pp 237–293Google Scholar
  16. Forester RM, Lowenstein TK, Spencer RJ (2005) An ostracode based paleolimnologic and paleohydrologic history of Death Valley: 200 to 0 ka. Geol Soc Am Bull 117:1379–1386. doi: 10.1130/B25637.1 CrossRefGoogle Scholar
  17. Handford CR (1982) Sedimentology and evaporite genesis in a Holocene continental-sabkha playa basin—Bristol Dry Lake, California. Sedimentology 29:239–253. doi: 10.1111/j.1365-3091.1982.tb01721.x CrossRefGoogle Scholar
  18. Hanor JS (1994) Origin of saline fluids in sedimentary basins. In: Parnell J (ed) Geofluids: origin, migration and evolution of fluids in sedimentary basins Geological Society (London) Special Publication 78, London, pp 151–174Google Scholar
  19. Hardie LA (1990) The roles of rifting and hydrothermal CaCl2 brines in the origin of potash evaporites: an hypothesis. Am J Sci 290:43–106Google Scholar
  20. Hill ML, Troxel BW (1966) Tectonics of Death Valley region, California. Geol Soc Am Bull 77:435–438. doi: 10.1130/0016-7606(1966)77[435:TODVRC]2.0.CO;2 CrossRefGoogle Scholar
  21. Hunt CB, Mabey DR (1966) Stratigraphy and structure, Death Valley, California. U.S. Geological Survey Professional Paper 494-A, 162 pGoogle Scholar
  22. Hunt CB, Robinson TW, Bowles WA, Washburn AL (1966) Hydrologic basin Death Valley California. U.S. Geological Survey Professional Paper 494-B, 138 pGoogle Scholar
  23. Ide F (1978) Cubicación del yacimiento Salar de Atacama. Memoria para optar al título de Ingeniero Civil de Minas. Facultad de Ciencias Fisicas y Matemáticas, Departamento de Minas, Universidad de Chile, Santiago, 144 ppGoogle Scholar
  24. Jones BF (1966) Geochemical evolution of closed basin water in the western Great Basin. In: Rau JL (ed) 2nd symposium on salt, Northern Ohio Geological Society, Cleveland, Ohio, pp 181–200Google Scholar
  25. Jones BF, Deocampo DM (2004) Geochemistry of saline lakes. Treatise Geochem 5:393–424. doi: 10.1016/B0-08-043751-6/05083-0 CrossRefGoogle Scholar
  26. Jordan TE, Munoz N, Hein M, Lowenstein T, Godfrey L, Yu J (2002) Active faulting and folding without topographic expression in an evaporite basin, Chile. Geol Soc Am Bull 114:1406–1421 doi: 10.1130/0016-7606(2002)114<1406:AFAFWT>2.0.CO;2CrossRefGoogle Scholar
  27. Kharaka YK, Maest AS, Carothers WW, Law LM, Lamothe PJ, Fries TL (1987) Geochemistry of metal-rich brines from central Mississippi Salt Dome basin, U.S.A. Appl Geochem 2:543–561. doi: 10.1016/0883-2927(87)90008-4 CrossRefGoogle Scholar
  28. Kharaka YK, Hanor JS (2004) Deep fluids in the continents: I. sedimentary basins. Treatise Geochem 5:499–540Google Scholar
  29. Land LS, Prezbindowski (1981) The origin and evolution of saline formation water, lower Cretaceous carbonates, south-central Texas, U.S.A. J Hydrol (Amst) 54:51–74. doi: 10.1016/0022-1694(81)90152-9 CrossRefGoogle Scholar
  30. Land LS, Macpherson GL, Mack LE (1988) The geochemistry of saline formation waters, Miocene, offshore Louisiana. Trans Gulf Coast Assoc Geol Soc 38:503–511Google Scholar
  31. Li J, Lowenstein TK, Blackburn IR (1997) Responses of evaporite mineralogy to inflow water sources and climate during the past 100k.y. in Death Valley, California. Geol Soc Am Bull 109:1361–1371 doi: 10.1130/0016-7606(1997)109<1361:ROEMTI>2.3.CO;2CrossRefGoogle Scholar
  32. Lowenstein TK, Spencer RJ, Zhang P (1989) Origin of ancient potash evaporites: Clues from the modern nonmarine Qaidam Basin of western China. Science 245:1090–1092. doi: 10.1126/science.245.4922.1090 CrossRefGoogle Scholar
  33. Lowenstein TK, Li J, Brown C, Roberts SM, Ku T-L, Luo S, Yang W (1999) 200k.y. paleoclimate record from Death Valley salt core. Geology 27:3–6 doi: 10.1130/0091-7613(1999)027<0003:KYPRFD>2.3.CO;2CrossRefGoogle Scholar
  34. Lowenstein TK, Hein MC, Bobst AL, Jordan TE, Ku T-L, Luo S (2003) An assessment of stratigraphic completeness in climate-sensitive closed-basin lake sediments: Salar de Atacama, Chile. J Sediment Res 73:91–104. doi: 10.1306/061002730091 CrossRefGoogle Scholar
  35. McKibben MA, Williams AE, Elders WA, Eldridge CS (1987) Saline brines and metallogenesis in a modern sediment-filled rift: the Salton Sea geothermal system, California, U.S.A. Appl Geochem 2:563–578. doi: 10.1016/0883-2927(87)90009-6 CrossRefGoogle Scholar
  36. McKibben MA, Williams AE, Okubo S (1988) Metamorphosed Plio-Pleistocene evaporites and the origins of hypersaline brines in the Salton Sea geothermal system, California: fluid inclusion evidence. Geochim Cosmochim Acta 52:1047–1056. doi: 10.1016/0016-7037(88)90259-1 CrossRefGoogle Scholar
  37. Moraga A, Chong G, Fortt MA, Henriquez H (1974) Estudio geologico del Salar de Atacama, provincia de Antofagasta (Geologic study of the Salar de Atacama, province of Antofagasta). Instituto de Investigaciones Geologicas, Chile, Bulletin 29, p 56Google Scholar
  38. Muffler LJP, White DE (1969) Active metamorphism of Upper Cenozoic sediments in the Salton Sea Geothermal Field and the Salton Trough, southeastern California. Geol Soc Am Bull 80:157–182. doi: 10.1130/0016-7606(1969)80[157:AMOUCS]2.0.CO;2 CrossRefGoogle Scholar
  39. Peltzer G, Tapponier P, Armijo R (1989) Magnitude of late quaternary left-lateral displacements along the north edge of Tibet. Science 246:1285–1289. doi: 10.1126/science.246.4935.1285 CrossRefGoogle Scholar
  40. Phillips FM (2003) Cosmogenic 36Cl ages of quaternary basalt flows in the Mojave Desert, California, USA. Geomorphology 53:199–208. doi: 10.1016/S0169-555X(02)00328-8 CrossRefGoogle Scholar
  41. Risacher F, Alonso H (1996) Geoquimica del Salar de Atacama, parte 2: evolucion de las aguas. Rev Geol Chil 23:123–134Google Scholar
  42. Risacher F, Alonso H, Salazar C (2003) The origin of brines and salts in Chilean salars: a hydrochemical review. Earth Sci Rev 63:249–293. doi: 10.1016/S0012-8252(03)00037-0 CrossRefGoogle Scholar
  43. Rosen MR (1989) Sedimentological, geochemical, and hydrologic evolution of an intracontinental, closed-basin playa (Bristol Dry Lake,CA): a model for playa development and its implications for paleoclimate. Ph.D. Thesis, University of Texas, Austin, p 266Google Scholar
  44. Rosen MR (1991) Sedimentologic and geochemical constraints on the evolution of Bristol Dry Lake Basin, California, U.S.A. Palaeogeogr Palaeoclimatol Palaeoecol 84:229–257. doi: 10.1016/0031-0182(91)90046-T CrossRefGoogle Scholar
  45. Rosen MR (2000) Sedimentology, stratigraphy, and hydrochemistry of Bristol Dry Lake. In: Gierlowski-Kordesch EH, Kelts KR (eds) Lake Basins through space and time. American Association of Petroleum Geologists, Tulsa, Oklahoma, pp 597–604Google Scholar
  46. Rosen MR, Warren JK (1990) The origin and significance of groundwater-seepage gypsum from Bristol Dry Lake, California, USA. Sedimentology 37:983–996. doi: 10.1111/j.1365-3091.1990.tb01840.x Google Scholar
  47. Serpa L, de Voogd B, Wright L, Willemin J, Oliver J, Hauser E, Troxel B (1988) Structure of the central Death Valley pull-apart basin and vicinity from COCORP profiles in the southern Great Basin. Geol Soc Am Bull 100:1437–1450. doi:10.1130/0016-7606(1988)100<1437:SOTCDV>2.3.CO;2CrossRefGoogle Scholar
  48. Spencer RJ, Lowenstein TK, Casas E, Zhang P (1990) Origin of potash salts and brines in the Qaidam Basin, China. In: Spencer RJ, Chou IM (eds) Fluid-mineral interactions: a tribute to H.P. Eugster. The Geochemical Society, San Antonio, pp 395–408Google Scholar
  49. Steinkampf WC, Werrell WL (2001) Ground-water flow to Death Valley, as inferred from the chemistry and geohydrology of selected springs in Death Valley National Park, California and Nevada. U.S. Geological Survey Water-Resources Investigations Report, 98-4114, 37 pGoogle Scholar
  50. Von Damm KL (1995) Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In: Humphris SE et al (eds) Seafloor hydrothermal systems. American Geophysical Union, Washington, DC, pp 222–247Google Scholar
  51. Vengosh A, Chivas AR, Starinsky A, Kolodny Y, Zhang B, Zhang P (1995) Chemical and boron isotope compositions of non-marine brines from the Qaidam basin, Qinghai, China. Chem Geol 120:135–154. doi: 10.1016/0009-2541(94)00118-R CrossRefGoogle Scholar
  52. Wang Q, Coward MP (1990) The Chaidam Basin (NW China): formation and hydrocarbon potential. J Pet Geol 13:3–112Google Scholar
  53. Wills CJ (1989) A neotectonic tour of the Death Valley fault zone. Calif Geol 42:195–200Google Scholar
  54. Winograd IJ, Thordarson W (1975) Hydrogeologic and hydrochemical framework, south-central Great Basin, Nevada-California, with special reference to the Nevada Test Site. U.S. Geological Survey Professional Paper 712-C, 126 pGoogle Scholar
  55. Zhang P (1987) Saline Lakes of Qaidam Basin. Publishing House of Science, BeijingGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Geological SciencesState University of New YorkBinghamtonUSA
  2. 2.IRD – CNRS, Centre de Géochimie de la SurfaceStrasbourg CedexFrance

Personalised recommendations