Aquatic Geochemistry

, Volume 13, Issue 3, pp 237–264 | Cite as

Dissolution of Carbonate Sediments Under Rising pCO2 and Ocean Acidification: Observations from Devil’s Hole, Bermuda

  • Andreas J. AnderssonEmail author
  • Nicholas R. Bates
  • Fred T. Mackenzie
Original Paper


Rising atmospheric pCO2 and ocean acidification originating from human activities could result in increased dissolution of metastable carbonate minerals in shallow-water marine sediments. In the present study, in situ dissolution of carbonate sedimentary particles in Devil’s Hole, Bermuda, was observed during summer when thermally driven density stratification restricted mixing between the bottom water and the surface mixed layer and microbial decomposition of organic matter in the subthermocline layer produced pCO2 levels similar to or higher than those levels anticipated by the end of the 21st century. Trends in both seawater chemistry and the composition of sediments in Devil’s Hole indicate that Mg-calcite minerals are subject to selective dissolution under conditions of elevated pCO2. The derived rates of dissolution based on observed changes in excess alkalinity and estimates of vertical eddy diffusion ranged from 0.2 mmol to 0.8 mmol CaCO3 m−2 h−1. On a yearly basis, this range corresponds to 175–701 g CaCO3 m−2 year−1; the latter rate is close to 50% of the estimate of the current average global coral reef calcification rate of about 1,500 g CaCO3 m−2 year−1. Considering a reduction in marine calcification of 40% by the year 2100, or 90% by 2300, as a result of surface ocean acidification, the combination of high rates of carbonate dissolution and reduced rates of calcification implies that coral reefs and other carbonate sediment environments within the 21st and following centuries could be subject to a net loss in carbonate material as a result of increasing pCO2 arising from burning of fossil fuels.


Climate change CO2 Ocean acidification Carbonate minerals CaCO3 dissolution Mg-calcite Coral reef Calcification 



We are very grateful for the reviews from David Burdige and Wei-Jun Cai that significantly improved an initial draft of this manuscript. We would also like to thank Julian Mitchell, Brett Purinton, Christine Pequignet, and Marlene Jeffries for assistance and support in the field and in the lab. This research was supported in part by the National Science Foundation (Grants ATM 04-39051 and EAR02-23509; FTM) and the Bermuda Institute of Ocean Sciences Grants-in-aid program (AJA).


  1. Agegian CR (1985) The biogeochemical ecology of Porolithon gardineri (Foslie). Ph.D. dissertation, University of Hawaii, Honolulu, p 178Google Scholar
  2. Alexandersson ET (1976) Actual and anticipated petrographic effects of carbonate undersaturation in shallow seawater. Nature 262:653–657CrossRefGoogle Scholar
  3. Alexandersson ET (1979) Marine maceration of skeletal carbonates in the Skagerrak, North Sea. Sedimentology 26:845–852CrossRefGoogle Scholar
  4. Aller RC (1982) Carbonate dissolution in nearshore terrigenous muds: the role of physical and biological reworking. J Geol 90:79–95Google Scholar
  5. Andersen AT, Føyn L (1969) In: Lange R (ed) Chemical oceanography, Universitetsførlaget, Oslo, pp 129–130Google Scholar
  6. Andersson AJ, Mackenzie FT, Lerman A (2006) Coastal ocean CO2-carbonic acid-carbonate sediment system of the Anthropocene. Global Biogeochemical Cycles 20, GB1S92, doi:10.1029/2005GB002506Google Scholar
  7. Andersson AJ, Mackenzie FT, Lerman A (2005) Coastal ocean and carbonate systems in the high CO2 world of the Anthropocene. Am J Sci 305:875–918CrossRefGoogle Scholar
  8. Andersson AJ, Mackenzie FT, Ver LM (2003) Solution of shallow-water carbonates: an insignificant buffer against rising atmospheric CO2. Geology 31:513–516CrossRefGoogle Scholar
  9. Archer D, Emerson S, Reimers C (1989) Dissolution of calcite in deep-sea sediments: pH and O2 microelectrode results. Geochim Cosmochim Acta 53:2831–2846CrossRefGoogle Scholar
  10. Archer D, Kheshgi H, Maier-Reimer E (1998) Dynamics of fossil fuel CO2 neutralization by marine CaCO3. Global Biogeochem Cycles 12:259–276CrossRefGoogle Scholar
  11. Balzer W, Wefer G (1981) Dissolution of carbonate minerals in a subtropical shallow marine environment. Marine Chem 10:545–558CrossRefGoogle Scholar
  12. Barnes DJ, Cuff C (2000) Solution of reef rock buffers seawater against rising atmospheric CO2. In: Hopley D, Hopley M, Tamelander J et al (eds) Proceedings of the Ninth International Coral Reef Symposium Abstracts. State Ministry for the Environment, Indonesia, p 248Google Scholar
  13. Barnes DJ, Devereux MJ (1984) Productivity and calcification on a coral reef: a survey using pH and oxygen electrode techniques. J Exp Marine Biol Ecol 79:213–231CrossRefGoogle Scholar
  14. Bates NR (2007) Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last two decades. J Geophys Res, Oceans, 2006JC003759Google Scholar
  15. Bates NR (2002) Seasonal variability of the impact of coral reefs on ocean CO2 and air-sea CO2 exchange. Limnol Oceanogr 47(1):43–52Google Scholar
  16. Bates NR, Michaels AF, Knap AH (1996) Alkalinity changes in the Sargasso Sea: geochemical evidence of calcification? Marine Chem 51:347–358CrossRefGoogle Scholar
  17. Bates NR, Samuels L, Merlivat L (2001) Biogeochemical and physical factors influencing seawater fCO2 and air-sea CO2 exchange on the Bermuda coral reef. Limnol Oceanogr 46(4):833–846CrossRefGoogle Scholar
  18. Bischoff WD, Bertram MA, Mackenzie FT et al (1993) Diagenetic stabilization pathways of magnesian calcites. Carbonates Evaporites 8:82–89CrossRefGoogle Scholar
  19. Bischoff WD, Mackenzie FT, Bishop FC (1987) Stabilities of synthetic magnesian calcites in aqueous solution: comparison with biogenic materials. Geochim Cosmochim Acta 51:1413–1423CrossRefGoogle Scholar
  20. Borowitzka MA (1981) Photosynthesis and calcification in the articulates coralline red algae Amphiroa anceps and A. foliacea. Marine Biol 117:129–132Google Scholar
  21. Boucher G, Clavier J, Hily C et al (1998) Contribution of soft-bottoms to the community metabolism (primary production and calcification) of a barrier reef flat (Moorea, French Polynesia). J Exp Marine Biol Ecol 225:269–283CrossRefGoogle Scholar
  22. Brewer PG, Goldman JC (1976) Alkalinity changes generated by phytoplankton growth. Limnol Oceanogr 21:108–117Google Scholar
  23. Broecker WS, Takahashi T, Simpson HJ et al (1979) Fate of fossil-fuel carbon-dioxide and the global carbon budget. Science 206:409–418CrossRefGoogle Scholar
  24. Brown FI (1980) The nitrogen cycle and heat budget of a subtropical lagoon, Devil’s Hole, Harrington Sound, Bermuda: Implications for nitrous oxide production and consumption in marine environments. Ph.D. dissertation, Northwestern University, Evanston, Illinois, p 317Google Scholar
  25. Brown FI (1978) Mixing processes. In Barnes JA, Bodungen BV (eds) The Bermuda marine environment, vol 2. Bermuda Biological Station Spec. Pub. 17, pp 10–30Google Scholar
  26. Buddemeier RW, Kleypas JA, Aronson RB (2004) Coral reefs and global climate change: Potential contributions of climate change to stresses on coral reef ecosystems. Report prepared for the Pew Center on Global Climate Change, Arlington, VA, p 44Google Scholar
  27. Burdige DJ, Zimmerman RC (2002) Impact of sea grass density on carbonate dissolution in Bahamian sediments. Limnol Oceanogr 47:1751–1763CrossRefGoogle Scholar
  28. Burdige DJ, Zimmerman RC, Hu X (2007) Rates of carbonate dissolution in permeable sediments estimated from pore water profiles: the role of seagrasses. Submitted to Limnology and Oceanography.Google Scholar
  29. Busenberg E, Plummer NL (1989) Thermodynamics of magnesian calcite solid-solutions at 25°C and 1 atm total pressure. Geochim Cosmochim Acta 53:1189–1208CrossRefGoogle Scholar
  30. Cai W-J, Reimers CE, Shaw T (1994) Microelectrode studies of organic carbon degradation and calcite dissolution at a California continental rise site. Geochim Cosmochim Acta 59:497–511CrossRefGoogle Scholar
  31. Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365CrossRefGoogle Scholar
  32. Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res, Oceans, 110, (C9), C09S04, doi 10.1029/2004JC002671Google Scholar
  33. Chave KE (1954) Aspects of the biogeochemistry of magnesium 1. Calcareous marine organisms. J Geol 62:266–283CrossRefGoogle Scholar
  34. Chave KE (1962) Factors influencing the mineralogy of carbonate sediments. Limnol Oceanogr 7:218–223Google Scholar
  35. Chisholm JRM, Gattuso J-P (1991) Validity of the alkalinity anomaly technique for investigating calcification and photosynthesis in coral reef communities. Limnol Oceanogr 36:1232–1239Google Scholar
  36. Conand C, Chabenet P, Cuet P, Letourneur Y (1997) The carbonate budget of a fringing reef in La Reunion Island (Indian Ocean): sea urchin and fish bioerosion and net calcification. Proceedings of the Eighth International Coral Reef Symposium 1:953–958Google Scholar
  37. Denman KL, Gargett AE (1983) Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean. Limnol Oceanogr 28:801–815Google Scholar
  38. Dickson AG (1981) An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep-Sea Res 28A:609–623CrossRefGoogle Scholar
  39. Dickson A, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res 38:1733–1743CrossRefGoogle Scholar
  40. Dillon TM, Caldwell DR (1980) The batchelor spectrum and dissipation in the upper ocean. J Geophys Res 85:1910–1916Google Scholar
  41. DOE (1994) Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water; version 2. Dickson AG, Goyet C (eds) ORNL/CDIAC-74Google Scholar
  42. Doney SC (2006) The dangers of ocean acidification. Sci Am March:58–65Google Scholar
  43. Emerson SR, Grundmanis V, Graham V (1982) Carbonate chemistry in marine pore waters: MANOP sites C and S. Earth Planetary Sci Lett 61:220–232CrossRefGoogle Scholar
  44. Feely RA, Chen CT-A (1982) The effect of excess CO2 on the calculated calcite and aragonite saturation horizons in the Northeast Pacific. Geophys Res Lett 9:1294–1297Google Scholar
  45. Feely RA, Byrne RH, Betzer PR et al (1984) Factors influencing the degree of saturation of the surface and intermediate waters of the North Pacific Ocean with respect to aragonite. J Geophys Res 89:631–640Google Scholar
  46. Feely RA, Byrne RH, Acker JG et al (1988) Winter-summer variations of calcite and aragonite saturation in the Northeast Pacific. Marine Chem 25:227–241CrossRefGoogle Scholar
  47. Feely RA, Sabine CL, Lee K et al (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366CrossRefGoogle Scholar
  48. Fonselius SH (1983) Determination of hydrogen sulphide. In: Grasshoff K, Erhardt M, Kremling K (eds) Methods of seawater analysis, 2nd edn. Verlag Chemie, Weinheim, Germany, pp 73–80Google Scholar
  49. Friederich GE, Walz PM, Burczynski MG et al (2002) Inorganic carbon in the central California upwelling system during the 1997–1999 El Niño–La Niña event. Progr Oceanogr 54:185–203CrossRefGoogle Scholar
  50. Gao K, Aruga Y, Asada K et al (1993) Calcification in the articulated coralline alga Coralline pilulifera with special reference to the effect of elevated CO2 concentration. Marine Biol 117:129–132CrossRefGoogle Scholar
  51. Garrels RM, Mackenzie FT (eds) (1980) Some aspects of the role of the shallow ocean in global carbon dioxide uptake. Workshop report: Carbon dioxide effects research and assessment program, United States Department of EnergyGoogle Scholar
  52. Gattuso J-P, Frankignoulle M, Bourge I et al (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Global Planetary Change 18:37–46CrossRefGoogle Scholar
  53. Gattuso J-P, Allemand PD, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–188Google Scholar
  54. Gattuso J-P, Pichon M, Delesalle B et al (1993) Community metabolism and air-sea CO2 fluxes in coral reef ecosystems (Moorea, French Polynesia). Marine Ecol Progr Ser 96:259–267CrossRefGoogle Scholar
  55. Gattuso J-P, Pichon M, Delesalle B et al (1996) Carbon fluxes in coral reefs. I. Lagrangian measurement of community metabolism and resulting air-sea CO2 disequilibrium. Marine Ecol Progr Ser 145:109–121CrossRefGoogle Scholar
  56. Goyet C, Bradshaw AL, Brewer PG (1991) The carbonate system in the Black Sea. Deep-Sea Res 38(Suppl. 2):S1049–S1068Google Scholar
  57. Halley RB, Yates KK (2000) Will reef sediments buffer corals from increased global CO2. In: Hopley D, Hopley M, Tamelander J et al (eds) Proceedings of the Ninth International Coral Reef Symposium Abstracts. State Ministry for the Environment, Indonesia, p 248Google Scholar
  58. Higbie J (1991) Uncertainty in the linear regression slope. Am J Phys 59:184–185CrossRefGoogle Scholar
  59. Iglesias-Rodriguez MD, Armstrong R, Feely R et al (2002) Progress made in study of ocean’s calcium carbonate budget. EOS Trans Am Geophys Union 83(34):365Google Scholar
  60. IPCC Intergovernmental Panel on Climate Change (2001) Climate change 2001: the scientific basis—contribution of working group I to the third assessment report of the intergovernmental panel on climate change. In: Houghton JT, Ding Y, Griggs DJ et al (eds). Cambridge University Press, Cambridge, United Kingdom, p 881Google Scholar
  61. IPCC Intergovernmental Panel on Climate Change (2007) Climate change 2007: the physical science basis—contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M et al (eds). Cambridge University Press, Cambridge, United Kingdom, p 996Google Scholar
  62. James NP (1997) The cool-water carbonate depositional realm. In: James NP, Clarke JAD (eds) Cool-water carbonates: society for sedimentary geology. Special Publication No. 56, Tulsa, OK, pp 1–20Google Scholar
  63. Kanamori S, Ikegami H (1980) Computer-processed potentiometric titration for the determination of calcium and magnesium in seawater. J Oceanogr 36:177–184CrossRefGoogle Scholar
  64. Kinsey DW (1978) Alkalinity changes and coral reef calcification. Limnol Oceanogr 23:989–991Google Scholar
  65. Kleypas JA, Buddemeier RW, Gattuso J-P (2001) The future of coral reefs in an age of global change. Int J Earth Sci (Geologische Rundschau) 90:426–437CrossRefGoogle Scholar
  66. Kleypas JA, Buddemeier RW, Archer D et al (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120CrossRefGoogle Scholar
  67. Kleypas JA, Feely RA, Fabry VJ et al (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. Report of a workshop held 18–20 April 2005, St. Petersburg, FL, sponsored by NSF, NOAA, and the U.S. Geological Survey, p 88Google Scholar
  68. Knap AH, Michaels AF, Dow RL et al (1993) BATS methods manual, version 3. U.S. JGOFS Planning Office, Woods Hole, MAGoogle Scholar
  69. Knap AH, Michaels AF, Steinberg D et al (1997) BATS methods manual. U.S. JGOFS Planning Office, Woods HoleGoogle Scholar
  70. Kuffner IB, Andersson AJ, Jokiel P et al (submitted) Inhibition of calcifying algal communities on coral reefs due to ocean acidification.Google Scholar
  71. Laws E (1997) Mathematical methods for oceanographers. John Wiley and Sons, Inc., New York, p 343Google Scholar
  72. Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res 110, C09S07, doi:10.1029/2004JC002576Google Scholar
  73. Langdon C, Takahashi T, Sweeney C et al (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochem Cycles 14:639–654CrossRefGoogle Scholar
  74. Langdon C, Broecker WS, Hammond DE et al (2003) Effect of elevated CO2 on the community metabolism of an experimental coral reef. Global Biogeochemical Cycles, 17, doi:10.1029/2002GB001941Google Scholar
  75. Leclercq N, Gattuso J-P, Jaubert J (2002) Primary production, respiration, and calcification of a coral reef mesocosm under increased CO2 partial pressure. Limnol Oceanogr 47:558–564CrossRefGoogle Scholar
  76. Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. ORNL/CDIAC-105, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. U.S. Department of Energy, Oak Ridge, TennesseeGoogle Scholar
  77. Mackenzie FT, Agegian CR (1989) Biomineralization and tentative links to plate tectonics. In: Crick RE (ed) Origin, evolution, and modern aspects of biomineralization in plants and animals. Plenum Press, New York, pp 11–27Google Scholar
  78. Mackenzie FT, Bischoff WD, Bishop FC et al (1983) Magnesian calcites: low temperature occurrence, solubility and solid-solution behavior. In: Reeder RJ (ed) Reviews in mineralogy, carbonates: mineralogy and chemistry. Mineralogical Society of America, pp 97–143Google Scholar
  79. Mackenzie FT, Lerman A, Ver LM (2001) Recent past and future of the global carbon cycle. In: Gerhard LC, Harrison WE, Hanson BM (eds) Geological Perspectives of Global Climate Change. Studies in Geology 47:51–82Google Scholar
  80. Mackenzie FT, Vink S, Wollast R et al (1995) Comparative biogeochemistry of marine saline lakes. In: Lerman A, Imboden D, Gat J (eds) Physics and chemistry of lakes, 2nd edn. Springer-Verlag, Berlin, pp 265–278Google Scholar
  81. Marubini F, Barnett H, Langdon C et al (2001) Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa. Marine Ecol Progr Ser 220:153–162CrossRefGoogle Scholar
  82. Marubini F, Ferrier-Pagés C, Cuif J-P (2003) Suppression of skeletal growth in scleractinian corals by decreasing ambient carbonate ion concentration: a cross-family comparison. Proc R Soc Lond Ser B: Biol Sci 270:179–184CrossRefGoogle Scholar
  83. Mehrbach C, Culberson CH, Hawley JE et al (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907Google Scholar
  84. Michaels AF, Knap AH (1996) Overview of the U.S. JGOFS Bermuda Atlantic time-series study and the hydrostation S program. Deep-Sea Res II 43:157–198CrossRefGoogle Scholar
  85. Milliman JD (1993) Production and accumulation of calcium carbonate in the ocean: budget of a non steady state. Global Biogeochem Cycles 7:927–957Google Scholar
  86. Milliman JD, Droxler AW (1996) Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss. Geol Rundsch 85:496–504CrossRefGoogle Scholar
  87. Morris BJ, Barnes J, Brown F et al (1977) The Bermuda marine environment: a report of the Bermuda inshore waters investigation 1976–1977. Bermuda Biological Station Spec. Pub. 15, p 120Google Scholar
  88. Morse JW, Andersson AJ, Mackenzie FT (2006) Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and ocean acidification: Role of high Mg-calcites. Geochim Cosmochim Acta 70:5814–5830CrossRefGoogle Scholar
  89. Morse JW, Mackenzie FT (1990) Geochemistry of sedimentary carbonates. Elseiver, Amsterdam, p 707Google Scholar
  90. Moulin E, Jordens A, Wollast R (1985) Influence of the aerobic bacterial respiration on the early dissolution of carbonates in coastal sediments. Proceedings Progress in Belgium Oceanographic Research, Brussels, Belgium, pp 196–208Google Scholar
  91. Neumann AC (1963) Processes of recent carbonate sedimentation in Harrington Sound, Bermuda. Ph.D. dissertation, Lehigh University, Betlehem, Pennsylvania, p 130Google Scholar
  92. Neumann AC (1965) Processes of recent carbonate sedimentation in Harrington Sound, Bermuda. Bull Marine Sci 15:987–1035Google Scholar
  93. Orr JC, Fabry VJ, Aumont O et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impacts on calcifying organisms. Nature 437:681–686CrossRefGoogle Scholar
  94. Plummer LN, Mackenzie FT (1974) Predicting mineral solubility from rate data: application to the dissolution of magnesian calcites. Am J Sci 274:61–83CrossRefGoogle Scholar
  95. Riebesell U, Zondervan I, Rost B et al (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367CrossRefGoogle Scholar
  96. Rodgers KS, Jokiel P, Cox EF et al (in preparation) The potential impacts of ocean acidification on reproduction in the scleractinian coral Montipora capitata Google Scholar
  97. Sabine CL, Feely RA, Gruber N et al (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371CrossRefGoogle Scholar
  98. Schmalz RF, Chave KE (1963) Calcium carbonate: affecting saturation in ocean waters of Bermuda. Science 139:1206–1207CrossRefGoogle Scholar
  99. Smith AD, Roth AA (1979) Effect of carbon dioxide concentration on calcification in the red coralline alga Bosiella orbigniana. Marine Biol 52:217–225CrossRefGoogle Scholar
  100. Smith SV (1978) Coral-reef area and the contributions of reefs to processes and resources of the world’s oceans. Nature 273:225–226CrossRefGoogle Scholar
  101. Smith SV, Kinsey DW (1978) Calcification and organic carbon metabolism as indicated by carbon dioxide. In: Stoddart DR, Johannes RE (eds) Coral reefs: research methods, Monogr. Oceanogr. Methodol., 5, UNESCOGoogle Scholar
  102. Spero HJ, Bijma J, Lea DW et al (1997) Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390:497–500CrossRefGoogle Scholar
  103. Steinberg DK, Carlson CA, Bates NR et al (2001) The U.S. JGOFS Bermuda Atlantic time-series study: a decade-scale look at ocean biology and biogeochemistry. Deep-Sea Res II 48(8–9):1405–1447CrossRefGoogle Scholar
  104. Thorstenson DC, Mackenzie FT (1974) Time variability of pore water chemistry in recent carbonate sediments, Devil’s Hole, Harrington Sound, Bermuda. Geochim Cosmochim Acta 38:1–19CrossRefGoogle Scholar
  105. Walter LM, Burton EA (1990) Dissolution of recent platform carbonate sediments in marine pore fluids. Am J Sci 290:601–643CrossRefGoogle Scholar
  106. Winn CD, Li Y-H, Mackenzie FT et al (1998) Rising surface ocean dissolved inorganic carbon at the Hawaii Ocean Time-series site. Marine Chem 60:33–47CrossRefGoogle Scholar
  107. Wollast R, Garrels RM, Mackenzie FT (1980) Calcite-seawater reactions in ocean surface waters. Am J Sci 280:831–848CrossRefGoogle Scholar
  108. Yates KK, Halley RB (2003) Measuring coral reef community metabolism using new benthic chamber technology. Coral Reefs 22:247–255CrossRefGoogle Scholar
  109. Yates KK, Halley RB (2006) CO32− concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii. Biogeosciences 3:357–369CrossRefGoogle Scholar
  110. Zeebe RE, Wolf-Gladrow D (2003) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier, Amsterdam, p 346Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Andreas J. Andersson
    • 1
    Email author
  • Nicholas R. Bates
    • 1
  • Fred T. Mackenzie
    • 2
  1. 1.Bermuda Institute of Ocean SciencesSt. George’sBermuda
  2. 2.Department of Oceanography, School of Ocean and Earth Science and TechnologyUniversity of HawaiiHonoluluUSA

Personalised recommendations