Skip to main content
Log in

Total Dynamics of Quartz–Water System at Ambient Conditions

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

New data on the dissolution and growth of quartz in acid, nearly neutral and slightly alkaline solutions at ambient conditions are presented. During batch dissolutions, aqueous Si-concentrations increased nonlinearly towards limit values. During parallel growth experiments, however, the high Si-concentrations corresponding to 13-fold supersaturation with respect to quartz did not decreased. To interpret these results, two dynamic models (1) a reaction model and (2) a surface-complexation model, were derived. Both models were focused on (a) reversible dissolution/growth of “bulk quartz” and b) irreversible dissolution of “disturbed quartz” (weakly bounded Si-atoms) on “new surface”. Based on the reaction model, the differential rate law,

$${{dn_{{\rm Si(aq)}}}\over{dt}}=\left(p+{{r}\over {a_{{\rm H}^+}}}\right)+\left(u-p- {{r}\over {a_{{\rm H}^+}}}\right){{n_{{\rm Q_D}}}\over {\sum\limits_i{n_{{\rm Qi}}}}}-{{1}\over {V}}\left(q+ {{s}\over {a_{{\rm H}^+}}}\right)n_{{\rm Si(aq)}},$$

was derived, where dn Si(aq)/dt is the overall Si-flux into solution [mol s−1], \(a_{{\rm H}^+}\) is H+ ion activity, n QD is the instantaneous content of disturbed quartz (weakly bounded Si-atoms onto quartz surface) [mol], \(\sum\limits_ in_{{\rm Qi}}\) is the total content of Si-atoms on quartz surface [mol], V is the volume of solution [L], and n Si(aq) is the content of silicic acid in solution. The rate law parameters are \(p=k_1\{A\}a_{\rm w}^2 \), q=−k 2 {ASi, r=k 3  K w{A}a_w, s=−k 4  K Si{A} γSi, and \(u = k_5\{A\}a_{\rm w}^2\), where k 1 and k 2 are the rate constants for the dissolution and growth of bulk quartz in pure water, and k3 and k4 are the rate constants for the reaction of bulk quartz with hydroxyls. k 5 is the rate constant for the dissolution of disturbed quartz. K Si and K w are the dissociation constants of silicic acid and water, respectively. A is surface area [m2], a w is water activity, and γ Si is activity coefficient of silicic acid. The values of the rate constant were determined as follows: k 1=(3.0 ±1.0) × 10−14, k 2 < 1.62 × 10−11, k 3=(1.41 ± 0.09) × 10−7, k 4=(5.26 ± 0.62) × 10−9, and k 5=(1.71 ± 0.38) × 10−12, all in the units of mol m−2 s−1. In the acid, neutral, and alkaline solutions, respectively, the initial contents of disturbed quartz, n 0 QD, were found to be (3.42 ± 0.53) × 10−5, (2.63 ± 0.53) × 10−5, and (3.94 ± 0.50) × 10−5 mol per 1.66 mol (i.e., 100 g) of quartz samples (grain fraction of 71–150 μm in diameter). It relates to 23, 18, and 27 of total surface area (11 m2)

Based on the surface-complexation model, the alternative differential rate law,

$$\eqalign{{{dn_{\rm Si(aq)}}\over {dt}} =\{A\}(k_{\rm d(s)} a_{\rm w}{{n_{\rm s}}\over {n}}+k_{{\rm d}(0)}a_{\rm w}^\nu\theta_{(0)}+k_{{\rm d}(-)} a_{\rm w}^\nu \theta _{(-)}+ \cr \quad+k_{\rm d(Na)}a_{\rm w}^\nu\theta_{({\rm Na})}+ k_{{\rm d}(+)}a_{\rm w}^\nu \theta _{(+)}-\sum_i{k_{{\rm g(i)}}}\gamma _{\rm Si}{{n_{\rm Si(aq)}} \over V}),}$$

was derived, where A is total surface area [m2], a w is water activity, n s is the content of single bounded surface complex, –Si(OH)3 [mol], n is the total Si on quartz surface [mol], ν is a stoichiometric coefficient (2 or 3), γ Si is activity coefficient of silicic acid, and V is the volume of solution [L]. k d(i) is dissolution rate constants and θ (i) is molar fraction of ith surface complex. The indexes (s), (0), (-), (Na), and (+) denote single bounded complex, –Si–(OH)3, uncharged complex, >Si–OH, negatively charged complex, >Si–O, sodium complex, >Si–ONa, and positively charged complex, >Si–OH +2 , respectively. \(\sum\limits_{i} { k}_{{\rm g(i)}}\) is the sum of the rate constants for growth, k g(0) + k g(-) + k g(Na) + k g(s). The values of the rate constants were determined as follow: k d(s)=(1.79 ± 0.17) × 10−12, k d(0) < 5.8 × 10−15, k d(+)=(1.74 ± 0.06) × 10−12, k d(-)= (2.45 ± 0.09) × 10−12, k d(Na)=(7.23 ± 0.87) × 10−12 , and \(\sum\limits_{i} k_{{\rm g(i)}}\)< 2.3 × 10−11, all in the unit of mol m−2 s−1. The initial contents of disturbed quartz (as a single bounded complex –Si(OH)3, n 0 S), were found to be (3.20 ± 0.20) × 10−5, (2.30 ± 0.20) × 10−5, and (3.65 ± 0.15) × 10−5 mol on 1.66 mol of quartz samples in the acid, neutral, and alkaline solutions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P. Aagaard H.C. Helgeson (1982) ArticleTitleThermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. I. Theoretical considerations Am. J. Sci. 282 237–285 Occurrence Handle1:CAS:528:DyaL38XksFyksbg%3D Occurrence Handle10.2475/ajs.282.3.237

    Article  CAS  Google Scholar 

  • V.A. Alekseyev L.S. Medvedeva N.I. Prisyagina S.S. Meshalkin A.I. Balabin (1997) ArticleTitleChange in the dissolution rates of alkali feldspars as a result of secondary mineral precipitation and approach to equilibrium Geochim. Cosmochim. Acta 61 1125–1142 Occurrence Handle10.1016/S0016-7037(96)00405-X Occurrence Handle1:CAS:528:DyaK2sXhvFygs70%3D

    Article  CAS  Google Scholar 

  • R.S. Beckwith R. Reeve (1969) ArticleTitleDissolution and deposition of monosilicic acid in suspensions of ground quartz Geochim. Cosmochim. Acta 33 745–750 Occurrence Handle10.1016/0016-7037(69)90121-5 Occurrence Handle1:CAS:528:DyaF1MXkslCgu7c%3D

    Article  CAS  Google Scholar 

  • P.C. Bennett (1991) ArticleTitleQuartz dissolution in organic-rich aqueous systems Geochim. Cosmochim. Acta 55 1781–1798 Occurrence Handle10.1016/0016-7037(91)90023-X Occurrence Handle1:CAS:528:DyaK3MXls1eiurs%3D

    Article  CAS  Google Scholar 

  • P.C. Bennett M.E. Melcer D.I. Siegel J.P. Hassett (1988) ArticleTitleThe dissolution of quartz in dilute aqueous solutions of organic acids at 25 °C Geochim. Cosmochim. Acta 52 1521–1530 Occurrence Handle10.1016/0016-7037(88)90222-0 Occurrence Handle1:CAS:528:DyaL1cXkslKqurw%3D

    Article  CAS  Google Scholar 

  • P.C. Bennett M.E. Melcer D.I. Siegel J.P. Hassett (1988b) ArticleTitleErratum Geochim. Cosmochim. Acta 52 3023 Occurrence Handle10.1016/0016-7037(88)90222-0 Occurrence Handle1:CAS:528:DyaL1MXpvFajuw%3D%3D

    Article  CAS  Google Scholar 

  • G. Berger E. Cadore J. Schott P.M. Dove (1994) ArticleTitleDissolution rate of quartz in lead and sodium electrolyte-solutions between 25 °C and 300 °C – effect of the nature of surface complexes and reaction affinity Geochim. Cosmochim. Acta 58 541–551 Occurrence Handle10.1016/0016-7037(94)90487-1 Occurrence Handle1:CAS:528:DyaK2cXhs12jsb4%3D

    Article  CAS  Google Scholar 

  • G. Bird J. Boon T. Stone (1986) ArticleTitleSilica transport during steam injection into oil sands. I. Dissolution and precipitation kinetics of quartz: New results and review of existing data Chem. Geol. 54 69–80 Occurrence Handle10.1016/0009-2541(86)90072-0 Occurrence Handle1:CAS:528:DyaL28XhtFamsrY%3D

    Article  CAS  Google Scholar 

  • R.E. Blake L.M. Walter (1999) ArticleTitleKinetics of feldspar and quartz dissolution at 70–80 °C and nearly neutral pH: Effects of organic acids and NaCl Geochim. Cosmochim. Acta 63 2043–2059 Occurrence Handle10.1016/S0016-7037(99)00072-1 Occurrence Handle1:CAS:528:DyaK1MXls12ms7k%3D

    Article  CAS  Google Scholar 

  • A.E. Blum A.C. Lasaga (1988) ArticleTitleRole of surface speciation in the low-temperature dissolution of minerals. Nature 331 431–433 Occurrence Handle10.1038/331405a0 Occurrence Handle1:CAS:528:DyaL1cXpvVShtA%3D%3D

    Article  CAS  Google Scholar 

  • A.E. Blum R.A. Yund A.C. Lasaga (1990) ArticleTitleThe effect of dislocation density on the dissolution rate of quartz Geochim. Cosmochim. Acta 54 283–297 Occurrence Handle10.1016/0016-7037(90)90318-F Occurrence Handle1:CAS:528:DyaK3cXktV2lsbk%3D

    Article  CAS  Google Scholar 

  • A.E. Blum A.C. Lasaga (1991) ArticleTitleThe role of surface speciation in the dissolution of albite Geochim. Cosmochim. Acta 55 2193–2201 Occurrence Handle10.1016/0016-7037(91)90096-N Occurrence Handle1:CAS:528:DyaK3MXls1eiu7k%3D

    Article  CAS  Google Scholar 

  • M. Borkovec J. Westall (1983) ArticleTitleSolution of the Poisson–Boltzmann equation for surface excesses of ions in the diffuse layer at the oxide–electrolyte interface J. Electroanal. Chem. 150 325–337 Occurrence Handle10.1016/0368-1874(83)80292-5 Occurrence Handle1:CAS:528:DyaL3sXlsVygsLw%3D

    Article  CAS  Google Scholar 

  • P.V. Brady J.V. Walther (1990) ArticleTitleKinetics of quartz dissolution at low temperatures Chem. Geol. 82 253–264 Occurrence Handle10.1016/0009-2541(90)90084-K Occurrence Handle1:CAS:528:DyaK3cXksVeqtr0%3D

    Article  CAS  Google Scholar 

  • S.L. Brantley S.R. Crane D.A. Crerar R. Hellmann R. Stallard (1986) ArticleTitleDissolution of dislocation etch pits in quartz Geochim. Cosmochim. Acta 50 2349–2361 Occurrence Handle10.1016/0016-7037(86)90087-6 Occurrence Handle1:CAS:528:DyaL28XmtFWqurg%3D

    Article  CAS  Google Scholar 

  • W.H. Casey H.R. Westrich T. Massis J.F. Banfield G.W. Arnold (1989) ArticleTitleThe surface of labradorite feldspar after acid hydrolysis Chem. Geol. 78 205–218 Occurrence Handle10.1016/0009-2541(89)90058-2 Occurrence Handle1:CAS:528:DyaK3cXhsVarurw%3D

    Article  CAS  Google Scholar 

  • W.H. Casey A.C. Lasaga G.V. Gibbs (1990) ArticleTitleMechanisms of silica dissolution as inferred from the kinetic isotope effect Geochim. Cosmochim. Acta 54 3369–3378 Occurrence Handle10.1016/0016-7037(90)90291-R Occurrence Handle1:CAS:528:DyaK3MXosFGgtw%3D%3D

    Article  CAS  Google Scholar 

  • Y. Chen S.L. Brantley E.S. Ilton (2000) ArticleTitleX-ray photoelectron spectroscopic measurement of the temperature dependence of leaching of cations from the albite surface Chem. Geol. 163 115–128 Occurrence Handle10.1016/S0009-2541(99)00096-0 Occurrence Handle1:CAS:528:DC%2BD3cXntlansg%3D%3D

    Article  CAS  Google Scholar 

  • L. Chou R. Wollast (1985) ArticleTitleSteady state kinetics and dissolution mechanisms of albite Am. J. Sci. 285 963–993 Occurrence Handle1:CAS:528:DyaL28XltlOlug%3D%3D Occurrence Handle10.2475/ajs.285.10.963

    Article  CAS  Google Scholar 

  • Crerar D.A. and Dove P.M. (1990) Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor. In 2nd International Symposium: Geochemistry of the Earth’s Surface and of Mineral Formation, July 2–8, Aix en Provence, France.

  • Davis J.A. and Kent D.B (1990) Surface complexation modeling in aqueous geochemistry, Mineral–Water Interface Geochemistry: In (eds.), M.F. Hochella, and A.F. White, Washington D.C., Mineralogical Society of America, Reviews in Mineralogy, v. 23, Chapt. 5, p.177–260.

  • E.V. Dobrovolsky (1987) ArticleTitlePhysico-chemical mechanisms of weathering processes and corresponding models of dynamics of mineral zonality evolution Chem. Geol. 60 89–94 Occurrence Handle10.1016/0009-2541(87)90113-6

    Article  Google Scholar 

  • P.M. Dove (1994) ArticleTitleThe dissolution kinetics of quartz in sodium-chloride solutions at 25 °C to 300 °C Am. J. Sci. 294 665–712 Occurrence Handle1:CAS:528:DyaK2cXmtlCrsbw%3D Occurrence Handle10.2475/ajs.294.6.665

    Article  CAS  Google Scholar 

  • P.M. Dove (1999) ArticleTitleThe dissolution kinetics of quartz in aqueous mixed cation solutions Geochim. Cosmochim. Acta 63 3715–3727 Occurrence Handle10.1016/S0016-7037(99)00218-5 Occurrence Handle1:CAS:528:DyaK1MXnvFSnur0%3D

    Article  CAS  Google Scholar 

  • P.M. Dove D.A. Crerar (1990) ArticleTitleKinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor Geochim. Cosmochim. Acta 54 955–969 Occurrence Handle10.1016/0016-7037(90)90431-J Occurrence Handle1:CAS:528:DyaK3cXlvFCqsbk%3D

    Article  CAS  Google Scholar 

  • P.M. Dove S.F. Elston (1992) ArticleTitleDissolution kinetics of quartz in sodium chloride solutions: Analysis of existing data and a rate model for 25 °C Geochim. Cosmochim. Acta 56 4147–4156 Occurrence Handle10.1016/0016-7037(92)90257-J Occurrence Handle1:CAS:528:DyaK3sXosVGnsQ%3D%3D

    Article  CAS  Google Scholar 

  • Dove P.M. and Rimstidt J.D. (1994) Silica–water interactions. In Silica: Physical Behavior, Geochemistry and Materials Applications (eds. P.J. Heaney, C.T. Prewitt and G.V. Gibbs), Review in Mineralogy, Vol. 29, pp. 259–308. Min. Soc. Am., Chelsea, Michigan.

  • P.M. Dove C.J. Nix (1997) ArticleTitleThe influence of the alkaline earth cations, magnesium, calcium, and barium on the dissolution kinetics of quartz Geochim. Cosmochim. Acta 61 3329–3340 Occurrence Handle10.1016/S0016-7037(97)00217-2 Occurrence Handle1:CAS:528:DyaK2sXmt1KlsLk%3D

    Article  CAS  Google Scholar 

  • D.A. Dzombak F.M.M. Morel (1990) Surface Complexation Modeling – Hydrous Ferric Oxide John Wiley New York 393

    Google Scholar 

  • C.M. Eggleston M.F. Hochella SuffixJr. G.A. Parks (1989) ArticleTitleSample preparation and aging effects on the dissolution rate and surface composition of diopside Geochim. Cosmochim. Acta 53 797–804 Occurrence Handle10.1016/0016-7037(89)90026-4 Occurrence Handle1:CAS:528:DyaL1MXktFSgtLw%3D

    Article  CAS  Google Scholar 

  • B.A. Flaming (1986) ArticleTitleKinetics of reaction between silicic acid and amorphous silica surfaces in NaCl solutions J. Coll. Interface Sci. 110 40–64 Occurrence Handle10.1016/0021-9797(86)90351-6

    Article  Google Scholar 

  • H.A. Foner I. Gal (1981) ArticleTitleAccurate spectrophotometric method for the determination of silica in rock, minerals and related materials Analyst 106 521–528 Occurrence Handle10.1039/an9810600521 Occurrence Handle1:CAS:528:DyaL3MXltVOrtLk%3D

    Article  CAS  Google Scholar 

  • S.P. Franklin A. Hajash SuffixJr. T.A. Dewers T.T. Tieh (1994) ArticleTitleThe role of carboxylic acids in albite and quartz dissolution: An experimental study under diagenetic conditions Geochim. Cosmochim. Acta 58 4259–4279 Occurrence Handle10.1016/0016-7037(94)90332-8 Occurrence Handle1:CAS:528:DyaK2cXmvVehsr4%3D

    Article  CAS  Google Scholar 

  • J.M. Gautier E.H. Oelkers J. Schott (2001) ArticleTitleAre quartz dissolution rates proportional to B.E.T. surface areas?. Geochim. Cosmochim. Acta 65 1059–1070 Occurrence Handle10.1016/S0016-7037(00)00570-6 Occurrence Handle1:CAS:528:DC%2BD3MXitlOisb8%3D

    Article  CAS  Google Scholar 

  • S.R. Gíslason P.J. Heaney E.H. Oelkers J. Schott (1997) ArticleTitleKinetics and thermodynamic properties of moganite, a novel silica polymorph Geochim. Cosmochim. Acta 61 1193–1204 Occurrence Handle10.1016/S0016-7037(96)00409-7

    Article  Google Scholar 

  • A.J. Gratz P. Bird G.B. Quiro (1990) ArticleTitleDissolution of quartz in aqueous basic solutions, 106–236 °C. Surface kinetics of “perfect” crystallographic faces Geochim. Cosmochim. Acta 54 2911–2922 Occurrence Handle10.1016/0016-7037(90)90109-X Occurrence Handle1:CAS:528:DyaK3MXms1Shsw%3D%3D

    Article  CAS  Google Scholar 

  • H.C. Helgeson (1971) ArticleTitleKinetics of mass transfer among silicates and aqueous solutions Geochim. Cosmochim. Acta 35 421–469 Occurrence Handle10.1016/0016-7037(71)90043-3 Occurrence Handle1:CAS:528:DyaE3MXksVSqtr0%3D

    Article  CAS  Google Scholar 

  • H.C. Helgeson R.M. Garrels F.T. MacKenzie (1969) ArticleTitleEvaluation of irreversible reactions in geochemical processes involving mineral and aqueous solutions. II. Applications Geochim. Cosmochim. Acta 33 455–481 Occurrence Handle10.1016/0016-7037(69)90127-6 Occurrence Handle1:CAS:528:DyaF1MXhtFOitr4%3D

    Article  CAS  Google Scholar 

  • H.C. Helgeson W.M. Murphy P. Aagaard (1984) ArticleTitleThermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. II. Rate constants, effective surface area, and the hydrolysis of feldspar Geochim. Cosmochim. Acta 48 2405–2432 Occurrence Handle10.1016/0016-7037(84)90294-1 Occurrence Handle1:CAS:528:DyaL2MXkvVyksA%3D%3D

    Article  CAS  Google Scholar 

  • R. Hellmann C.M. Eggleston M.F. Hochella SuffixJr. D.A. Crerar (1990) ArticleTitleThe formation of leached layers on albite surfaces during dissolution under hydrothermal conditions Geochim. Cosmochim. Acta 54 1267–1281 Occurrence Handle10.1016/0016-7037(90)90152-B Occurrence Handle1:CAS:528:DyaK3cXkvVahtrw%3D

    Article  CAS  Google Scholar 

  • T. Hiemstra W.H. Van Riemsdijk (1990) ArticleTitleMultiple activated complex dissolution of metal (hydr)oxides: A thermodynamic approach applied to quartz J. Coll. Int. Sci. 136 132–150 Occurrence Handle10.1016/0021-9797(90)90084-2 Occurrence Handle1:CAS:528:DyaK3cXhvVKls7Y%3D

    Article  CAS  Google Scholar 

  • W.A. House D.R. Orr (1992) ArticleTitleInvestigation of the pH-dependence of the kinetics of quartz dissolution at 25 °C J. Chem. Soc. Farad. Trans. 88 233–241 Occurrence Handle10.1039/ft9928800233 Occurrence Handle1:CAS:528:DyaK38Xhtlarurc%3D

    Article  CAS  Google Scholar 

  • Kent D.B., Tripathi V.S., Ball N.B., Leckie J.O. and Siegel M.D. (1988) Surface-complexation modeling of radionuclide adsorption in subsurface environments. Sandia National Labs, Albuquerque, U.S. Nuclear Regulatory Commission Rpt NUREG/CR-4807, 113 pp.

  • K.G. Knauss T.J. Wolery (1988) ArticleTitleThe dissolution kinetics of quartz as a function of pH and time at 70 °C Geochim. Cosmochim. Acta 52 43–53 Occurrence Handle10.1016/0016-7037(88)90055-5 Occurrence Handle1:CAS:528:DyaL1cXhtlGjtbo%3D

    Article  CAS  Google Scholar 

  • Lasaga A.C. (1981) Rate laws of chemical reactions. In Kinetics of geochemical processes (eds. A.C. Lasaga and R.J. Kirkpatrick), Review in Mineralogy,Vol. 8, pp. 1–68. Min. Soc. Am., Chelsea, Michigan.

  • A.C. Lasaga A.E. Blum (1986) ArticleTitleSurface chemistry, etch pits and mineral/water reactions Geochim. Cosmochim. Acta 50 2363–2379 Occurrence Handle10.1016/0016-7037(86)90088-8 Occurrence Handle1:CAS:528:DyaL28XmtFWqurk%3D

    Article  CAS  Google Scholar 

  • F.T. Mackenzie R. Gees (1971) ArticleTitleQuartz: synthesis at earth-surface conditions Science 173 533–535 Occurrence Handle1:CAS:528:DyaE3MXkvF2rtL0%3D

    CAS  Google Scholar 

  • G.W. Morey R.O. Fournier J.J. Rowe (1962) ArticleTitleThe solubility of quartz in water in the temperature interval from 25 °C to 300 °C Geochim. Cosmochim. Acta 26 1029–1032 Occurrence Handle10.1016/0016-7037(62)90027-3 Occurrence Handle1:CAS:528:DyaF3sXhslOnuw%3D%3D

    Article  CAS  Google Scholar 

  • I.J. Muir H.W. Nesbitt (1991) ArticleTitleEffects of aqueous cations on the dissolution of labradorite feldspar. Geochim Cosmochim. Acta 55 3181–3189 Occurrence Handle10.1016/0016-7037(91)90482-K Occurrence Handle1:CAS:528:DyaK38XksVWktg%3D%3D

    Article  CAS  Google Scholar 

  • H.W. Nesbitt W.M. Skinner (2001) ArticleTitleEarly development of Al, Ca, and Na compositional gradients in labradorite leached in pH 2 HCl solutions Geochim. Cosmochim. Acta 65 715–727 Occurrence Handle10.1016/S0016-7037(00)00530-5 Occurrence Handle1:CAS:528:DC%2BD3MXhs1SrurY%3D

    Article  CAS  Google Scholar 

  • Parkhurst D.L. and Appelo C.A.J. (1999) User’s guide to PHREEQC (Version 2) a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geol. Surv. Water-Res. Investig. Report 99–4259, 312 pp.

  • R. Petrovich (1981) ArticleTitleKinetics of dissolution of mechanically comminuted rock-forming oxides and silicates. I. Deformation and dissolution of quartz under laboratory conditions Geochim. Cosmochim. Acta 45 1665–1674 Occurrence Handle10.1016/0016-7037(81)90002-8 Occurrence Handle1:CAS:528:DyaL38XhtVOhu7g%3D

    Article  CAS  Google Scholar 

  • J.D. Rimstidt (1997) ArticleTitleQuartz solubility at low temperatures Geochim. Cosmochim. Acta 61 2553–2558 Occurrence Handle10.1016/S0016-7037(97)00103-8 Occurrence Handle1:CAS:528:DyaK2sXltVansr0%3D

    Article  CAS  Google Scholar 

  • J.D. Rimstidt H.L. Barnes (1980) ArticleTitleThe kinetics of silica–water reactions Geochim. Cosmochim. Acta 44 1683–1699 Occurrence Handle10.1016/0016-7037(80)90220-3 Occurrence Handle1:CAS:528:DyaL3MXhtV2ru7w%3D

    Article  CAS  Google Scholar 

  • P. Schindler H.R. Kamber (1968) ArticleTitleDie aciditat von silanolgruppen Helv. Chim. Acta 51 1781–1786 Occurrence Handle10.1002/hlca.19680510738 Occurrence Handle1:CAS:528:DyaF1cXltFSnu74%3D

    Article  CAS  Google Scholar 

  • P. Schindler W. Stumm (1987) The surface chemistry of oxides hydroxides and oxide mineral W. Stumm (Eds) Aquatic Surface Chemistry. John Wiley and Sons New York 83–110

    Google Scholar 

  • M.S. Schulz A.F. White (1999) ArticleTitleChemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico III: quartz dissolution rates Geochim. Cosmochim. Acta 63 337–350 Occurrence Handle10.1016/S0016-7037(99)00056-3 Occurrence Handle1:CAS:528:DyaK1MXktVWhsLk%3D

    Article  CAS  Google Scholar 

  • J. Schwartzentruber W. Furst H. Renon (1987) ArticleTitleDissolution of quartz into dilute alkaline solutions at 90 °C: a kinetic study Geochem. Cosmochim. Acta 51 1867–1874 Occurrence Handle10.1016/0016-7037(87)90177-3 Occurrence Handle1:CAS:528:DyaL2sXltFOqsbY%3D

    Article  CAS  Google Scholar 

  • W. Stober (1967) ArticleTitleFormation of silicic acid in aqueous suspensions of different silica modifications Adv. Chem. Ser. 67 161–182 Occurrence Handle10.1021/ba-1967-0067.ch007

    Article  Google Scholar 

  • W. Stumm J.J. Morgan (1996) Aquatic Chemistry John Wiley and Sons New York

    Google Scholar 

  • J.W. Tester W.G. Worley B.A. Robinson C.O. Grigsby J.L. Feerer (1994) ArticleTitleCorrelating quartz dissolution kinetics in pure water from 25 °C to 625 °C Geochim. Cosmochim. Acta 58 2407–2420 Occurrence Handle10.1016/0016-7037(94)90020-5 Occurrence Handle1:CAS:528:DyaK2cXks1Wlu78%3D

    Article  CAS  Google Scholar 

  • Y. Tsuzuki S. Kadota I. Takashima (1985) ArticleTitleDissolution process of albite and albite glass in acid solutions at 47 °C Chem. Geol. 49 127–140 Occurrence Handle10.1016/0009-2541(85)90151-2 Occurrence Handle1:CAS:528:DyaL2MXltVOqtrg%3D

    Article  CAS  Google Scholar 

  • J.V. Walther (1996) ArticleTitleRelation between rates of aluminosilicate mineral dissolution, pH, temperature, and surface charge Am. J. Sci. 296 693–728 Occurrence Handle1:CAS:528:DyaK28XlslKksbs%3D Occurrence Handle10.2475/ajs.296.7.693

    Article  CAS  Google Scholar 

  • M.W. Wegner J.M. Christie (1983) ArticleTitleChemical etching of deformation substructures in quartz Phys. Chem. Miner. 9 67–79 Occurrence Handle10.1007/BF00308150 Occurrence Handle1:CAS:528:DyaL3sXhtFOgsbo%3D

    Article  CAS  Google Scholar 

  • H.R. Westrich W.H. Casey G.W. Arnold (1989) ArticleTitleOxygen isotope exchange in the leached layer of labradorite feldspar Geochim. Cosmochim. Acta 53 1681–1685 Occurrence Handle10.1016/0016-7037(89)90252-4 Occurrence Handle1:CAS:528:DyaL1MXltlOltLs%3D

    Article  CAS  Google Scholar 

  • E. Wieland B. Wehrli W. Stumm (1988) ArticleTitleThe coordination chemistry of weathering: III A generalization on the dissolution rates of minerals. Geochim. Cosmochim. Acta 52 1969–1981 Occurrence Handle10.1016/0016-7037(88)90178-0 Occurrence Handle1:CAS:528:DyaL1cXmtFeltbg%3D

    Article  CAS  Google Scholar 

  • Wollast R. and Chou L. (1986) Process, rate, and proton consumption by silicate weathering. Trans. 13th Congr. Int. Soc. Soil Sci., Hamburg, pp. 127–136.

  • W.G. Worley J.W. Tester C.O. Grigsby (1996) ArticleTitleQuartz dissolution kinetics from 100 to 200 oC as a function of pH and ionic strength AICH J. 42 3442–3457 Occurrence Handle10.1002/aic.690421214 Occurrence Handle1:CAS:528:DyaK28XnsFOjsbY%3D

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the editor F.T. Mackenzie and three anonymous reviewers for their valuable comments that led to significant improvement of the manuscript. P. Kadlec, V. Vávra and P. Sulovský from the Institute of Geological Sciences (Masaryk University) are thanked for performing the chemical analysis, X-ray diffraction, and SEM study, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JIŘÍ FAIMON.

Rights and permissions

Reprints and permissions

About this article

Cite this article

FAIMON, J. Total Dynamics of Quartz–Water System at Ambient Conditions. Aquat Geochem 11, 139–172 (2005). https://doi.org/10.1007/s10498-004-2880-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-004-2880-8

Keywords

Navigation