Skip to main content

Advertisement

Log in

Mechanisms of cuproptosis and its relevance to distinct diseases

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Copper is a trace element required by the organism, but once the level of copper exceeds the threshold, it becomes toxic and even causes death. The underlying mechanisms of copper-induced death are inconclusive, with different studies showing different opinions on the mechanism of copper-induced death. Multiple investigations have shown that copper induces oxidative stress, endoplasmic reticulum stress, nucleolar stress, and proteasome inhibition, all of which can result in cell death. The latest research elucidates a copper-dependent death and denominates it as cuproptosis. Cuproptosis takes place through the combination of copper and lipoylated proteins of the tricarboxylic acid cycle, triggering agglomeration of lipoylated proteins and loss of iron-sulfur cluster proteins, leading to proteotoxic stress and ultimately death. Given the toxicity and necessity of copper, abnormal levels of copper lead to diseases such as neurological diseases and cancer. The development of cancer has a high demand for copper, neurological diseases involve the change of copper contents and the binding of copper to proteins. There is a close relationship between these two kinds of diseases and copper. Here, we summarize the mechanisms of copper-related death, and the association between copper and diseases, to better figure out the influence of copper in cell death and diseases, thus advancing the clinical remedy of these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Bisaglia M, Bubacco L (2020) Copper Ions and Parkinson’s Disease. Why Is Homeost So Relevant? Biomolecules 10(2). https://doi.org/10.3390/biom10020195

  2. Linder MC (2020) Copper homeostasis in mammals, with emphasis on secretion and excretion. A review. Int J Mol Sci 21(14). https://doi.org/10.3390/ijms21144932

  3. Tsvetkov P, Coy S, Petrova B et al (2022) Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375(6586):1254–1261. https://doi.org/10.1126/science.abf0529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Deveau M (2010) Contribution of drinking water to dietary requirements of essential metals. J Toxicol Environ Health A 73(2):235–241. https://doi.org/10.1080/15287390903340880

    Article  CAS  PubMed  Google Scholar 

  5. Ahuja A, Dev K, Tanwar RS, Selwal KK, Tyagi PK (2015) Copper mediated neurological disorder: visions into amyotrophic lateral sclerosis, Alzheimer and Menkes disease. J Trace Elem Med Biol 29:11–23. https://doi.org/10.1016/j.jtemb.2014.05.003

    Article  CAS  PubMed  Google Scholar 

  6. Mezzaroba L, Alfieri DF, Colado Simao AN, Vissoci Reiche EM (2019) The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology 74:230–241. https://doi.org/10.1016/j.neuro.2019.07.007

    Article  CAS  PubMed  Google Scholar 

  7. Shanbhag VC, Gudekar N, Jasmer K et al (2021) Copper metabolism as a unique vulnerability in cancer. Biochim Biophys Acta Mol Cell Res 1868(2):118893. https://doi.org/10.1016/j.bbamcr.2020.118893

    Article  CAS  PubMed  Google Scholar 

  8. Nyvltova E, Dietz JV, Seravalli J, Khalimonchuk O, Barrientos A (2022) Coordination of metal center biogenesis in human cytochrome c oxidase. Nat Commun 13(1):3615. https://doi.org/10.1038/s41467-022-31413-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15(6):1583–1606. https://doi.org/10.1089/ars.2011.3999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu H, Hua Y, Keep RF, Xi G (2019) Brain ceruloplasmin expression after experimental Intracerebral Hemorrhage and Protection Against Iron-Induced Brain Injury. Transl Stroke Res 10(1):112–119. https://doi.org/10.1007/s12975-018-0669-0

    Article  CAS  PubMed  Google Scholar 

  11. Ngo V, Duennwald ML (2022) Nrf2 and oxidative stress: a General Overview of mechanisms and implications in Human Disease. Antioxid (Basel) 11(12). https://doi.org/10.3390/antiox11122345

  12. Shackelford RE, Kaufmann WK, Paules RS (2000) Oxidative stress and cell cycle checkpoint function. Free Radic Biol Med 28(9):1387–1404. https://doi.org/10.1016/s0891-5849(00)00224-0

    Article  CAS  PubMed  Google Scholar 

  13. Ho T, Ahmadi S, Kerman K (2022) Do glutathione and copper interact to modify Alzheimer’s disease pathogenesis? Free Radic Biol Med 181:180–196. https://doi.org/10.1016/j.freeradbiomed.2022.01.025

    Article  CAS  PubMed  Google Scholar 

  14. Aliaga ME, Lopez-Alarcon C, Bridi R, Speisky H (2016) Redox-implications associated with the formation of complexes between copper ions and reduced or oxidized glutathione. J Inorg Biochem 154:78–88. https://doi.org/10.1016/j.jinorgbio.2015.08.005

    Article  CAS  PubMed  Google Scholar 

  15. Zhang J, Duan D, Xu J, Fang J (2018) Redox-Dependent copper carrier promotes Cellular Copper Uptake and oxidative stress-mediated apoptosis of Cancer cells. ACS Appl Mater Interfaces 10(39):33010–33021. https://doi.org/10.1021/acsami.8b11061

    Article  CAS  PubMed  Google Scholar 

  16. Lovejoy DB, Jansson PJ, Brunk UT et al (2011) Antitumor activity of metal-chelating compound Dp44mT is mediated by formation of a redox-active copper complex that accumulates in lysosomes. Cancer Res 71(17):5871–5880. https://doi.org/10.1158/0008-5472.CAN-11-1218

    Article  CAS  PubMed  Google Scholar 

  17. Trejo-Solis C, Jimenez-Farfan D, Rodriguez-Enriquez S et al (2012) Copper compound induces autophagy and apoptosis of glioma cells by reactive oxygen species and JNK activation. BMC Cancer 12:156. https://doi.org/10.1186/1471-2407-12-156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pena-Blanco A, Garcia-Saez AJ, Bax (2018) Bak and beyond - mitochondrial performance in apoptosis. FEBS J 285(3):416–431. https://doi.org/10.1111/febs.14186

    Article  CAS  PubMed  Google Scholar 

  19. He H, Zou Z, Wang B et al (2020) Copper oxide nanoparticles induce oxidative DNA damage and cell death via copper ion-mediated P38 MAPK activation in vascular endothelial cells. Int J Nanomed 15:3291–3302. https://doi.org/10.2147/IJN.S241157

    Article  CAS  Google Scholar 

  20. Liao J, Yang F, Tang Z et al (2019) Inhibition of caspase-1-dependent pyroptosis attenuates copper-induced apoptosis in chicken hepatocytes. Ecotoxicol Environ Saf 174:110–119. https://doi.org/10.1016/j.ecoenv.2019.02.069

    Article  CAS  PubMed  Google Scholar 

  21. Seo Y, Cho YS, Huh YD, Park H (2016) Copper Ion from Cu2O Crystal induces AMPK-Mediated Autophagy via Superoxide in endothelial cells. Mol Cells 39(3):195–203. https://doi.org/10.14348/molcells.2016.2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gao W, Huang Z, Duan J et al (2021) Elesclomol induces copper-dependent ferroptosis in colorectal cancer cells via degradation of ATP7A. Mol Oncol 15(12):3527–3544. https://doi.org/10.1002/1878-0261.13079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ren X, Li Y, Zhou Y et al (2021) Overcoming the compensatory elevation of NRF2 renders hepatocellular carcinoma cells more vulnerable to disulfiram/copper-induced ferroptosis. Redox Biol 46:102122. https://doi.org/10.1016/j.redox.2021.102122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guo H, Ouyang Y, Yin H et al (2022) Induction of autophagy via the ROS-dependent AMPK-mTOR pathway protects copper-induced spermatogenesis disorder. Redox Biol 49:102227. https://doi.org/10.1016/j.redox.2021.102227

    Article  CAS  PubMed  Google Scholar 

  25. Rana SVS (2020) Endoplasmic reticulum stress Induced by toxic Elements-a review of recent developments. Biol Trace Elem Res 196(1):10–19. https://doi.org/10.1007/s12011-019-01903-3

    Article  CAS  PubMed  Google Scholar 

  26. Lebeaupin C, Vallee D, Hazari Y et al (2018) Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol 69(4):927–947. https://doi.org/10.1016/j.jhep.2018.06.008

    Article  CAS  PubMed  Google Scholar 

  27. Oakes SA (2020) Endoplasmic reticulum stress signaling in Cancer cells. Am J Pathol 190(5):934–946. https://doi.org/10.1016/j.ajpath.2020.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oakes SA, Papa FR (2015) The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol 10:173–194. https://doi.org/10.1146/annurev-pathol-012513-104649

    Article  CAS  PubMed  Google Scholar 

  29. Liu H, Lai W, Liu X et al (2021) Exposure to copper oxide nanoparticles triggers oxidative stress and endoplasmic reticulum (ER)-stress induced toxicology and apoptosis in male rat liver and BRL-3A cell. J Hazard Mater 401:123349. https://doi.org/10.1016/j.jhazmat.2020.123349

    Article  CAS  PubMed  Google Scholar 

  30. Wang X, Zhuang Y, Fang Y et al (2021) Endoplasmic reticulum stress aggravates copper-induced apoptosis via the PERK/ATF4/CHOP signaling pathway in duck renal tubular epithelial cells. Environ Pollut 272:115981. https://doi.org/10.1016/j.envpol.2020.115981

    Article  CAS  PubMed  Google Scholar 

  31. Wu H, Guo H, Liu H et al (2020) Copper sulfate-induced endoplasmic reticulum stress promotes hepatic apoptosis by activating CHOP, JNK and caspase-12 signaling pathways. Ecotoxicol Environ Saf 191:110236. https://doi.org/10.1016/j.ecoenv.2020.110236

    Article  CAS  PubMed  Google Scholar 

  32. Guo J, Bai Y, Liao J et al (2020) Copper induces apoptosis through endoplasmic reticulum stress in Skeletal Muscle of Broilers. Biol Trace Elem Res 198(2):636–643. https://doi.org/10.1007/s12011-020-02076-0

    Article  CAS  PubMed  Google Scholar 

  33. Kaur P, Johnson A, Northcote-Smith J, Lu C, Suntharalingam K (2020) Immunogenic cell death of breast Cancer Stem cells Induced by an endoplasmic reticulum-targeting copper(II) complex. ChemBioChem 21(24):3618–3624. https://doi.org/10.1002/cbic.202000553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang Y, Huo Z, Qi X, Zuo T, Wu Z (2022) Copper-induced tumor cell death mechanisms and antitumor theragnostic applications of copper complexes. Nanomed (Lond) 17(5):303–324. https://doi.org/10.2217/nnm-2021-0374

    Article  CAS  Google Scholar 

  35. Chen X, Zhang X, Chen J et al (2017) Hinokitiol copper complex inhibits proteasomal deubiquitination and induces paraptosis-like cell death in human cancer cells. Eur J Pharmacol 815:147–155. https://doi.org/10.1016/j.ejphar.2017.09.003

    Article  CAS  PubMed  Google Scholar 

  36. Mukherjee S, Sparks R, Metcalf R et al (2016) Cupriphilic compounds to aid in proteasome inhibition. Bioorg Med Chem Lett 26(15):3826–3829. https://doi.org/10.1016/j.bmcl.2016.04.075

    Article  CAS  PubMed  Google Scholar 

  37. Xiao Y, Chen DI, Zhang X et al (2010) Molecular study on copper-mediated tumor proteasome inhibition and cell death. Int J Oncol 37(1):81–87. https://doi.org/10.3892/ijo_00000655

    Article  CAS  PubMed  Google Scholar 

  38. Lafita-Navarro MC, Conacci-Sorrell M (2022) Nucleolar stress: from development to cancer. Semin Cell Dev Biol. https://doi.org/10.1016/j.semcdb.2022.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pfister AS (2019) Emerging role of the nucleolar stress response in Autophagy. Front Cell Neurosci 13:156. https://doi.org/10.3389/fncel.2019.00156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Russo A, Russo G (2017) Ribosomal Proteins Control or bypass p53 during nucleolar stress. Int J Mol Sci 18(1). https://doi.org/10.3390/ijms18010140

  41. Yang K, Yang J, Yi J (2018) Nucleolar stress: hallmarks, sensing mechanism and diseases. Cell Stress 2(6):125–140. https://doi.org/10.15698/cst2018.06.139

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chen CH, Chou YT, Yang YW, Lo KY (2021) High-dose copper activates p53-independent apoptosis through the induction of nucleolar stress in human cell lines. Apoptosis 26(11–12):612–627. https://doi.org/10.1007/s10495-021-01692-y

    Article  CAS  PubMed  Google Scholar 

  43. Kanellis DC, Zisi A, Skrott Z et al (2023) Actionable cancer vulnerability due to translational arrest, p53 aggregation and ribosome biogenesis stress evoked by the disulfiram metabolite CuET. Cell Death Differ 30(7):1666–1678. https://doi.org/10.1038/s41418-023-01167-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tsvetkov P, Detappe A, Cai K et al (2019) Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat Chem Biol 15(7):681–689. https://doi.org/10.1038/s41589-019-0291-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brancolini C, Iuliano L (2020) Proteotoxic stress and cell death in Cancer cells. Cancers 12(9). https://doi.org/10.3390/cancers12092385

  46. Dai C, Dai S, Cao J (2012) Proteotoxic stress of cancer: implication of the heat-shock response in oncogenesis. J Cell Physiol 227(8):2982–2987. https://doi.org/10.1002/jcp.24017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tye BW, Churchman LS (2021) Hsf1 activation by proteotoxic stress requires concurrent protein synthesis. Mol Biol Cell 32(19):1800–1806. https://doi.org/10.1091/mbc.E21-01-0014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Braymer JJ, Lill R (2017) Iron-sulfur cluster biogenesis and trafficking in mitochondria. J Biol Chem 292(31):12754–12763. https://doi.org/10.1074/jbc.R117.787101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vallieres C, Holland SL, Avery SV (2017) Mitochondrial Ferredoxin Determines Vulnerability of Cells to Copper Excess. Cell Chem Biol. 24(10):1228-37 e3. https://doi.org/10.1016/j.chembiol.2017.08.005

  50. Zaman M, Khan AN, Wahiduzzaman, Zakariya SM, Khan RH (2019) Protein misfolding, aggregation and mechanism of amyloid cytotoxicity: an overview and therapeutic strategies to inhibit aggregation. Int J Biol Macromol 134:1022–1037. https://doi.org/10.1016/j.ijbiomac.2019.05.109

    Article  CAS  PubMed  Google Scholar 

  51. Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 81(11):678–699. https://doi.org/10.1007/s00109-003-0464-5

    Article  CAS  PubMed  Google Scholar 

  52. Karaballi RA, Merchant S, Power SR, Brosseau CL (2018) Electrochemical surface-enhanced Raman spectroscopy (EC-SERS) study of the interaction between protein aggregates and biomimetic membranes. Phys Chem Chem Phys 20(6):4513–4526. https://doi.org/10.1039/c7cp06838g

    Article  CAS  PubMed  Google Scholar 

  53. Hipp MS, Park SH, Hartl FU (2014) Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends Cell Biol 24(9):506–514. https://doi.org/10.1016/j.tcb.2014.05.003

    Article  CAS  PubMed  Google Scholar 

  54. Giffard RG, Xu L, Zhao H et al (2004) Chaperones, protein aggregation, and brain protection from hypoxic/ischemic injury. J Exp Biol 207(18):3213–3220. https://doi.org/10.1242/jeb.01034

    Article  CAS  PubMed  Google Scholar 

  55. Wang X, Zhou M, Liu Y, Si Z (2023) Cope with copper: from copper linked mechanisms to copper-based clinical cancer therapies. Cancer Lett 561:216157. https://doi.org/10.1016/j.canlet.2023.216157

    Article  CAS  PubMed  Google Scholar 

  56. Kardos J, Heja L, Simon A et al (2018) Copper signalling: causes and consequences. Cell Commun Signal 16(1):71. https://doi.org/10.1186/s12964-018-0277-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tisato F, Marzano C, Porchia M, Pellei M, Santini C (2010) Copper in diseases and treatments, and copper-based anticancer strategies. Med Res Rev 30(4):708–749. https://doi.org/10.1002/med.20174

    Article  CAS  PubMed  Google Scholar 

  58. Blockhuys S, Celauro E, Hildesjo C et al (2017) Defining the human copper proteome and analysis of its expression variation in cancers. Metallomics 9(2):112–123. https://doi.org/10.1039/c6mt00202a

    Article  CAS  PubMed  Google Scholar 

  59. Blockhuys S, Wittung-Stafshede P (2017) Roles of copper-binding proteins in breast Cancer. Int J Mol Sci 18(4). https://doi.org/10.3390/ijms18040871

  60. Shanbhag V, Jasmer-McDonald K, Zhu S et al (2019) ATP7A delivers copper to the lysyl oxidase family of enzymes and promotes tumorigenesis and metastasis. Proc Natl Acad Sci U S A 116(14):6836–6841. https://doi.org/10.1073/pnas.1817473116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Blockhuys S, Zhang X, Wittung-Stafshede P (2020) Single-cell tracking demonstrates copper chaperone Atox1 to be required for breast cancer cell migration. Proc Natl Acad Sci U S A 117(4):2014–2019. https://doi.org/10.1073/pnas.1910722117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Blockhuys S, Brady DC, Wittung-Stafshede P (2020) Evaluation of copper chaperone ATOX1 as prognostic biomarker in breast cancer. Breast Cancer 27(3):505–509. https://doi.org/10.1007/s12282-019-01044-4

    Article  PubMed  Google Scholar 

  63. Li J, Wu F, Li C et al (2022) The cuproptosis-related signature predicts prognosis and indicates immune microenvironment in breast cancer. Front Genet 13:977322. https://doi.org/10.3389/fgene.2022.977322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li Z, Zhang H, Wang X et al (2022) Identification of cuproptosis-related subtypes, characterization of tumor microenvironment infiltration, and development of a prognosis model in breast cancer. Front Immunol 13:996836. https://doi.org/10.3389/fimmu.2022.996836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang T, Liu Y, Li J et al (2022) Insights into prognosis and immune infiltration of cuproptosis-related genes in breast cancer. Front Immunol 13:1054305. https://doi.org/10.3389/fimmu.2022.1054305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Song S, Zhang M, Xie P, Wang S, Wang Y (2022) Comprehensive analysis of cuproptosis-related genes and tumor microenvironment infiltration characterization in breast cancer. Front Immunol 13:978909. https://doi.org/10.3389/fimmu.2022.978909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jiang B, Zhu H, Feng W et al (2022) Database mining detected a Cuproptosis-Related Prognostic Signature and a Related Regulatory Axis in breast Cancer. Dis Markers 2022:9004830. https://doi.org/10.1155/2022/9004830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li W, Zhang X, Chen Y, Pang D (2022) Identification of cuproptosis-related patterns and construction of a scoring system for predicting prognosis, tumor microenvironment-infiltration characteristics, and immunotherapy efficacy in breast cancer. Front Oncol 12:966511. https://doi.org/10.3389/fonc.2022.966511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhou Z, Deng J, Pan T et al (2022) Prognostic significance of cuproptosis-related gene signatures in breast Cancer based on Transcriptomic Data Analysis. Cancers (Basel) 14(23). https://doi.org/10.3390/cancers14235771

  70. Wang R, Xu K, Chen Q et al (2023) Cuproptosis engages in c-Myc-mediated breast cancer stemness. J Transl Med 21(1):409. https://doi.org/10.1186/s12967-023-04204-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sha S, Si L, Wu X et al (2022) Prognostic analysis of cuproptosis-related gene in triple-negative breast cancer. Front Immunol 13:922780. https://doi.org/10.3389/fimmu.2022.922780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chan N, Willis A, Kornhauser N et al (2017) Influencing the Tumor Microenvironment: a phase II study of copper depletion using tetrathiomolybdate in patients with breast Cancer at high risk for recurrence and in Preclinical models of Lung metastases. Clin Cancer Res 23(3):666–676. https://doi.org/10.1158/1078-0432.CCR-16-1326

    Article  CAS  PubMed  Google Scholar 

  73. Gupte A, Mumper RJ (2007) Copper chelation by D-penicillamine generates reactive oxygen species that are cytotoxic to human leukemia and breast cancer cells. Free Radic Biol Med 43(9):1271–1278. https://doi.org/10.1016/j.freeradbiomed.2007.07.003

    Article  CAS  PubMed  Google Scholar 

  74. Liu N, Liu C, Li X et al (2014) A novel proteasome inhibitor suppresses tumor growth via targeting both 19S proteasome deubiquitinases and 20S proteolytic peptidases. Sci Rep 4:5240. https://doi.org/10.1038/srep05240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bian Z, Fan R, Xie L (2022) A Novel cuproptosis-related prognostic gene signature and validation of Differential expression in Clear Cell Renal Cell Carcinoma. Genes (Basel) 13(5). https://doi.org/10.3390/genes13050851

  76. Han J, Hu Y, Liu S, Jiang J, Wang H (2022) A newly established cuproptosis-Associated Long non-coding RNA signature for Predicting Prognosis and Indicating Immune Microenvironment features in soft tissue sarcoma. J Oncol 2022:8489387. https://doi.org/10.1155/2022/8489387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xu S, Liu D, Chang T et al (2022) Cuproptosis-Associated lncRNA establishes New Prognostic Profile and predicts Immunotherapy Response in Clear Cell Renal Cell Carcinoma. Front Genet 13:938259. https://doi.org/10.3389/fgene.2022.938259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ji ZH, Ren WZ, Wang HQ, Gao W, Yuan B (2022) Molecular Subtyping based on cuproptosis-related genes and characterization of Tumor Microenvironment infiltration in kidney renal clear cell carcinoma. Front Oncol 12:919083. https://doi.org/10.3389/fonc.2022.919083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yuan H, Qin X, Wang J et al (2022) The cuproptosis-associated 13 gene signature as a robust predictor for outcome and response to immune- and targeted-therapies in clear cell renal cell carcinoma. Front Immunol 13:971142. https://doi.org/10.3389/fimmu.2022.971142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mei W, Liu X, Jia X et al (2022) A cuproptosis-related Gene Model for Predicting the prognosis of Clear Cell Renal Cell Carcinoma. Front Genet 13:905518. https://doi.org/10.3389/fgene.2022.905518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang B, Song Q, Wei Y et al (2022) Comprehensive investigation into cuproptosis in the characterization of clinical features, molecular characteristics, and immune situations of clear cell renal cell carcinoma. Front Immunol 13:948042. https://doi.org/10.3389/fimmu.2022.948042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xie M, Cheng B, Yu S et al (2022) Cuproptosis-related MiR-21-5p/FDX1 Axis in Clear Cell Renal Cell Carcinoma and its potential impact on Tumor Microenvironment. Cells 12(1). https://doi.org/10.3390/cells12010173

  83. Zhang G, Chen X, Fang J et al (2022) Cuproptosis status affects treatment options about immunotherapy and targeted therapy for patients with kidney renal clear cell carcinoma. Front Immunol 13:954440. https://doi.org/10.3389/fimmu.2022.954440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Guo T, Zhang J, Yuan Z et al (2022) Cuproptosis-related genes are Associated with Cell cycle and serve as the Prognostic signature for Clear Cell Renal Cell Carcinoma. J Clin Med 11(24). https://doi.org/10.3390/jcm11247507

  85. Yang Q, Wang Y, Yang Q et al (2017) Cuprous oxide nanoparticles trigger ER stress-induced apoptosis by regulating copper trafficking and overcoming resistance to sunitinib therapy in renal cancer. Biomaterials 146:72–85. https://doi.org/10.1016/j.biomaterials.2017.09.008

    Article  CAS  PubMed  Google Scholar 

  86. Long S, Wang Y, Chen Y et al (2022) Pan-cancer analysis of cuproptosis regulation patterns and identification of mTOR-target responder in clear cell renal cell carcinoma. Biol Direct 17(1):28. https://doi.org/10.1186/s13062-022-00340-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Davis CI, Gu X, Kiefer RM et al (2020) Altered copper homeostasis underlies sensitivity of hepatocellular carcinoma to copper chelation. Metallomics 12(12):1995–2008. https://doi.org/10.1039/d0mt00156b

    Article  CAS  PubMed  Google Scholar 

  88. Wang X, He S, Zheng X et al (2021) Transcriptional analysis of the expression, prognostic value and immune infiltration activities of the COMMD protein family in hepatocellular carcinoma. BMC Cancer 21(1):1001. https://doi.org/10.1186/s12885-021-08699-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang Y, Zhang Y, Wang L et al (2022) Development and experimental verification of a prognosis model for cuproptosis-related subtypes in HCC. Hepatol Int. https://doi.org/10.1007/s12072-022-10381-0

    Article  PubMed  Google Scholar 

  90. Peng X, Zhu J, Liu S et al (2022) Signature construction and molecular subtype identification based on cuproptosis-related genes to predict the prognosis and immune activity of patients with hepatocellular carcinoma. Front Immunol 13:990790. https://doi.org/10.3389/fimmu.2022.990790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang G, Xiao R, Zhao S et al (2022) Cuproptosis regulator-mediated patterns associated with immune in fi ltration features and construction of cuproptosis-related signatures to guide immunotherapy. Front Immunol 13:945516. https://doi.org/10.3389/fimmu.2022.945516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang XX, Wu LH, Ji H et al (2022) A novel cuproptosis-related prognostic signature and potential value in HCC immunotherapy. Front Mol Biosci 9:1001788. https://doi.org/10.3389/fmolb.2022.1001788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ding L, Li W, Tu J et al (2022) Identification of cuproptosis-related subtypes, cuproptosis-related gene prognostic index in hepatocellular carcinoma. Front Immunol 13:989156. https://doi.org/10.3389/fimmu.2022.989156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhao X, Chen J, Yin S et al (2022) The expression of cuproptosis-related genes in hepatocellular carcinoma and their relationships with prognosis. Front Oncol 12:992468. https://doi.org/10.3389/fonc.2022.992468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fu J, Wang S, Li Z et al (2022) Comprehensive multiomics analysis of cuproptosis-related gene characteristics in hepatocellular carcinoma. Front Genet 13:942387. https://doi.org/10.3389/fgene.2022.942387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu Z, Qi Y, Wang H et al (2022) Risk model of hepatocellular carcinoma based on cuproptosis-related genes. Front Genet 13:1000652. https://doi.org/10.3389/fgene.2022.1000652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yan C, Niu Y, Ma L, Tian L, Ma J (2022) System analysis based on the cuproptosis-related genes identifies LIPT1 as a novel therapy target for liver hepatocellular carcinoma. J Transl Med 20(1):452. https://doi.org/10.1186/s12967-022-03630-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang Z, Zeng X, Wu Y et al (2022) Cuproptosis-related risk score predicts prognosis and characterizes the Tumor Microenvironment in Hepatocellular Carcinoma. Front Immunol 13. https://doi.org/10.3389/fimmu.2022.925618

  99. Li D, Shi Z, Liu X et al (2023) Identification and development of a novel risk model based on cuproptosis-associated RNA methylation regulators for predicting prognosis and characterizing immune status in hepatocellular carcinoma. Hepatol Int 17(1):112–130. https://doi.org/10.1007/s12072-022-10460-2

    Article  PubMed  Google Scholar 

  100. Chen Y, Tang L, Huang W et al (2023) Identification of a prognostic cuproptosis-related signature in hepatocellular carcinoma. Biol Direct 18(1):4. https://doi.org/10.1186/s13062-023-00358-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Niu D, Wang D, Fan L et al (2023) The copper (II) complex of salicylate phenanthroline inhibits proliferation and induces apoptosis of hepatocellular carcinoma cells. Environ Toxicol. https://doi.org/10.1002/tox.23771

    Article  PubMed  Google Scholar 

  102. Ji Y, Dai F, Zhou B (2018) Designing Salicylaldehyde isonicotinoyl hydrazones as Cu(II) ionophores with tunable chelation and release of copper for hitting redox Achilles heel of cancer cells. Free Radic Biol Med 129:215–226. https://doi.org/10.1016/j.freeradbiomed.2018.09.017

    Article  CAS  PubMed  Google Scholar 

  103. Juloski JT, Rakic A, Cuk VV et al (2020) Colorectal cancer and trace elements alteration. J Trace Elem Med Biol 59:126451. https://doi.org/10.1016/j.jtemb.2020.126451

    Article  CAS  PubMed  Google Scholar 

  104. Barresi V, Trovato-Salinaro A, Spampinato G et al (2016) Transcriptome analysis of copper homeostasis genes reveals coordinated upregulation of SLC31A1,SCO1, and COX11 in colorectal cancer. FEBS Open Bio 6(8):794–806. https://doi.org/10.1002/2211-5463.12060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Aubert L, Nandagopal N, Steinhart Z et al (2020) Copper bioavailability is a KRAS-specific vulnerability in colorectal cancer. Nat Commun 11(1):3701. https://doi.org/10.1038/s41467-020-17549-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jana A, Das A, Krett NL et al (2020) Nuclear translocation of Atox1 potentiates activin A-induced cell migration and colony formation in colon cancer. PLoS ONE 15(1):e0227916. https://doi.org/10.1371/journal.pone.0227916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Du Y, Lin Y, Wang B et al (2022) Cuproptosis patterns and tumor immune infiltration characterization in colorectal cancer. Front Genet 13:976007. https://doi.org/10.3389/fgene.2022.976007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wu W, Dong J, Lv Y, Chang D (2022) Cuproptosis-related genes in the prognosis of colorectal cancer and their correlation with the tumor microenvironment. Front Genet 13:984158. https://doi.org/10.3389/fgene.2022.984158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhu Z, Zhao Q, Song W et al (2022) A novel cuproptosis-related molecular pattern and its tumor microenvironment characterization in colorectal cancer. Front Immunol 13:940774. https://doi.org/10.3389/fimmu.2022.940774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Huang H, Long Z, Xie Y et al (2022) Molecular subtypes based on cuproptosis-related genes and Tumor Microenvironment Infiltration characterization in Colorectal Cancer. J Oncol 2022:5034092. https://doi.org/10.1155/2022/5034092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wu Z, Lin C, Zhang F et al (2023) TIGD1 function as a potential cuproptosis Regulator following a Novel cuproptosis-related gene risk signature in Colorectal Cancer. Cancers (Basel) 15(8). https://doi.org/10.3390/cancers15082286

  112. Shao Y, Fan X, Yang X et al (2023) Impact of cuproptosis-related markers on clinical status, tumor immune microenvironment and immunotherapy in colorectal cancer: a multi-omic analysis. Comput Struct Biotechnol J 21:3383–3403. https://doi.org/10.1016/j.csbj.2023.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Xu M, Mu J, Wang J, Zhou Q, Wang J (2022) Construction and validation of a cuproptosis-related lncRNA signature as a novel and robust prognostic model for colon adenocarcinoma. Front Oncol 12:961213. https://doi.org/10.3389/fonc.2022.961213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Huang X, Hou Y, Weng X et al (2021) Diethyldithiocarbamate-copper complex (CuET) inhibits colorectal cancer progression via mir-16-5p and 15b-5p/ALDH1A3/PKM2 axis-mediated aerobic glycolysis pathway. Oncogenesis 10(1):4. https://doi.org/10.1038/s41389-020-00295-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fatfat M, Merhi RA, Rahal O et al (2014) Copper chelation selectively kills colon cancer cells through redox cycling and generation of reactive oxygen species. BMC Cancer 14:527. https://doi.org/10.1186/1471-2407-14-527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li G, Luo Q, Wang X et al (2022) Deep learning reveals cuproptosis features assist in predict prognosis and guide immunotherapy in lung adenocarcinoma. Front Endocrinol (Lausanne) 13:970269. https://doi.org/10.3389/fendo.2022.970269

    Article  PubMed  Google Scholar 

  117. Succony L, Rassl DM, Barker AP, McCaughan FM, Rintoul RC (2021) Adenocarcinoma spectrum lesions of the lung: detection, pathology and treatment strategies. Cancer Treat Rev 99:102237. https://doi.org/10.1016/j.ctrv.2021.102237

    Article  CAS  PubMed  Google Scholar 

  118. Matsuoka R, Shiba-Ishii A, Nakano N et al (2018) Heterotopic production of ceruloplasmin by lung adenocarcinoma is significantly correlated with prognosis. Lung Cancer 118:97–104. https://doi.org/10.1016/j.lungcan.2018.01.012

    Article  PubMed  Google Scholar 

  119. Yan H, Jin X, Yin L, Zhu C, Feng G (2022) Investigating Causal associations of circulating micronutrients concentrations with the risk of Lung Cancer: a mendelian randomization study. Nutrients 14(21). https://doi.org/10.3390/nu14214569

  120. Tsang T, Posimo JM, Gudiel AA et al (2020) Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma. Nat Cell Biol 22(4):412–424. https://doi.org/10.1038/s41556-020-0481-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hu Q, Wang R, Ma H, Zhang Z, Xue Q (2022) Cuproptosis predicts the risk and clinical outcomes of lung adenocarcinoma. Front Oncol 12:922332. https://doi.org/10.3389/fonc.2022.922332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang S, Xing N, Meng X, Xiang L, Zhang Y (2022) Comprehensive bioinformatics analysis to identify a novel cuproptosis-related prognostic signature and its ceRNA regulatory axis and candidate traditional Chinese medicine active ingredients in lung adenocarcinoma. Front Pharmacol 13:971867. https://doi.org/10.3389/fphar.2022.971867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pan S, Song C, Meng H et al (2022) Identification of cuproptosis-related subtypes in lung adenocarcinoma and its potential significance. Front Pharmacol 13:934722. https://doi.org/10.3389/fphar.2022.934722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang Y, Zhang C, Ji C et al (2022) Molecular subtypes based on cuproptosis-related genes and immune profiles in lung adenocarcinoma. Front Genet 13:1006938. https://doi.org/10.3389/fgene.2022.1006938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sun X, Li Z, Meng F et al (2022) Cuproptosis associated genes affect prognosis and tumor microenvironment infiltration characterization in lung adenocarcinoma. Am J Cancer Res 12(10):4545–4565

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Wu M, Bao J, Lei Y et al (2022) Comprehensive analysis of the cuproptosis-related model to predict prognosis and indicate tumor immune infiltration in lung adenocarcinoma. Front Oncol 12:935672. https://doi.org/10.3389/fonc.2022.935672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Xiaona X, Liu Q, Zhou X et al (2023) Comprehensive analysis of cuproptosis-related genes in immune infiltration and prognosis in lung adenocarcinoma. Comput Biol Med 158:106831. https://doi.org/10.1016/j.compbiomed.2023.106831

    Article  CAS  PubMed  Google Scholar 

  128. Chen Y, Tang L, Huang W et al (2022) Identification and validation of a novel cuproptosis-related signature as a prognostic model for lung adenocarcinoma. Front Endocrinol (Lausanne) 13:963220. https://doi.org/10.3389/fendo.2022.963220

    Article  PubMed  Google Scholar 

  129. Yang J, Liu K, Yang L et al (2023) Identification and validation of a novel cuproptosis-related stemness signature to predict prognosis and immune landscape in lung adenocarcinoma by integrating single-cell and bulk RNA-sequencing. Front Immunol 14:1174762. https://doi.org/10.3389/fimmu.2023.1174762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Park KC, Fouani L, Jansson PJ et al (2016) Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics. Metallomics 8(9):874–886. https://doi.org/10.1039/c6mt00105j

    Article  CAS  PubMed  Google Scholar 

  131. Manikandamathavan VM, Parameswari RP, Weyhermuller T, Vasanthi HR, Nair BU (2011) Cytotoxic copper (II) mixed ligand complexes: crystal structure and DNA cleavage activity. Eur J Med Chem 46(9):4537–4547. https://doi.org/10.1016/j.ejmech.2011.07.030

    Article  CAS  PubMed  Google Scholar 

  132. Bao XZ, Dai F, Li XR, Zhou B (2018) Targeting redox vulnerability of cancer cells by prooxidative intervention of a glutathione-activated Cu(II) pro-ionophore: hitting three birds with one stone. Free Radic Biol Med 124:342–352. https://doi.org/10.1016/j.freeradbiomed.2018.06.021

    Article  CAS  PubMed  Google Scholar 

  133. Lv H, Liu X, Zeng X et al (2022) Comprehensive analysis of cuproptosis-related genes in Immune Infiltration and Prognosis in Melanoma. Front Pharmacol 13:930041. https://doi.org/10.3389/fphar.2022.930041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang M, Liu X, Wang D et al (2023) A novel cuproptosis-related gene signature to predict prognosis in Glioma. BMC Cancer 23(1):237. https://doi.org/10.1186/s12885-023-10714-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gromadzka G, Tarnacka B, Flaga A, Adamczyk A (2020) Copper dyshomeostasis in neurodegenerative diseases-therapeutic implications. Int J Mol Sci 21(23). https://doi.org/10.3390/ijms21239259

  136. Tumer Z, Moller LB (2010) Menkes disease. Eur J Hum Genet 18(5):511–518. https://doi.org/10.1038/ejhg.2009.187

    Article  PubMed  Google Scholar 

  137. Scheiber I, Dringen R, Mercer JF (2013) Copper: effects of deficiency and overload. Met Ions Life Sci 13:359–387. https://doi.org/10.1007/978-94-007-7500-8_11

    Article  PubMed  Google Scholar 

  138. Vairo FPE, Chwal BC, Perini S et al (2019) A systematic review and evidence-based guideline for diagnosis and treatment of Menkes disease. Mol Genet Metab 126(1):6–13. https://doi.org/10.1016/j.ymgme.2018.12.005

    Article  CAS  PubMed  Google Scholar 

  139. Bandmann O, Weiss KH, Kaler SG (2015) Wilson’s disease and other neurological copper disorders. Lancet Neurol 14(1):103–113. https://doi.org/10.1016/S1474-4422(14)70190-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Czlonkowska A, Litwin T, Dusek P et al (2018) Wilson disease. Nat Rev Dis Primers 4(1):21. https://doi.org/10.1038/s41572-018-0018-3

    Article  PubMed  PubMed Central  Google Scholar 

  141. Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25(1):59–70. https://doi.org/10.1111/ene.13439

    Article  CAS  PubMed  Google Scholar 

  142. Lee JH, Yang DS, Goulbourne CN et al (2022) Faulty autolysosome acidification in Alzheimer’s disease mouse models induces autophagic build-up of Abeta in neurons, yielding senile plaques. Nat Neurosci 25(6):688–701. https://doi.org/10.1038/s41593-022-01084-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chen LL, Fan YG, Zhao LX, Zhang Q, Wang ZY (2023) The metal ion hypothesis of Alzheimer’s disease and the anti-neuroinflammatory effect of metal chelators. Bioorg Chem 131:106301. https://doi.org/10.1016/j.bioorg.2022.106301

    Article  CAS  PubMed  Google Scholar 

  144. Rivera-Mancia S, Perez-Neri I, Rios C et al (2010) The transition metals copper and iron in neurodegenerative diseases. Chem Biol Interact 186(2):184–199. https://doi.org/10.1016/j.cbi.2010.04.010

    Article  CAS  PubMed  Google Scholar 

  145. Tiffany-Castiglioni E, Hong S, Qian Y (2011) Copper handling by astrocytes: insights into neurodegenerative diseases. Int J Dev Neurosci 29(8):811–818. https://doi.org/10.1016/j.ijdevneu.2011.09.004

    Article  CAS  PubMed  Google Scholar 

  146. Syme CD, Nadal RC, Rigby SE, Viles JH (2004) Copper binding to the amyloid-beta (abeta) peptide associated with Alzheimer’s disease: folding, coordination geometry, pH dependence, stoichiometry, and affinity of Abeta-(1–28): insights from a range of complementary spectroscopic techniques. J Biol Chem 279(18):18169–18177. https://doi.org/10.1074/jbc.M313572200

    Article  CAS  PubMed  Google Scholar 

  147. Multhaup G, Schlicksupp A, Hesse L et al (1996) The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(II) to copper(I). Science 271(5254):1406–1409. https://doi.org/10.1126/science.271.5254.1406

    Article  CAS  PubMed  Google Scholar 

  148. Heicklen-Klein A, Ginzburg I (2000) Tau promoter confers neuronal specificity and binds Sp1 and AP-2. J Neurochem 75(4):1408–1418. https://doi.org/10.1046/j.1471-4159.2000.0751408.x

    Article  CAS  PubMed  Google Scholar 

  149. Ahmadi S, Zhu S, Sharma R et al (2019) Aggregation of Microtubule binding repeats of tau protein is promoted by Cu(2). ACS Omega 4(3):5356–5366. https://doi.org/10.1021/acsomega.8b03595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Bacchella C, Gentili S, Bellotti D et al (2020) Binding and reactivity of copper to R(1) and R(3) fragments of tau protein. Inorg Chem 59(1):274–286. https://doi.org/10.1021/acs.inorgchem.9b02266

    Article  CAS  PubMed  Google Scholar 

  151. Lai Y, Lin C, Lin X et al (2022) Identification and immunological characterization of cuproptosis-related molecular clusters in Alzheimer’s disease. Front Aging Neurosci 14:932676. https://doi.org/10.3389/fnagi.2022.932676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Khan S, Barve KH, Kumar MS (2020) Recent advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer’s Disease. Curr Neuropharmacol 18(11):1106–1125. https://doi.org/10.2174/1570159X18666200528142429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wang L, Yin YL, Liu XZ et al (2020) Current understanding of metal ions in the pathogenesis of Alzheimer’s disease. Transl Neurodegener 9:10. https://doi.org/10.1186/s40035-020-00189-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Montes S, Rivera-Mancia S, Diaz-Ruiz A, Tristan-Lopez L, Rios C (2014) Copper and copper proteins in Parkinson’s disease. Oxid Med Cell Longev 2014:147251. https://doi.org/10.1155/2014/147251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Tolosa E, Garrido A, Scholz SW, Poewe W (2021) Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol 20(5):385–397. https://doi.org/10.1016/s1474-4422(21)00030-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Davies KM, Mercer JF, Chen N, Double KL (2016) Copper dyshomoeostasis in Parkinson’s disease: implications for pathogenesis and indications for novel therapeutics. Clin Sci (Lond) 130(8):565–574. https://doi.org/10.1042/CS20150153

    Article  PubMed  Google Scholar 

  157. Liddell JR, White AR (2018) Nexus between mitochondrial function, iron, copper and glutathione in Parkinson’s disease. Neurochem Int 117:126–138. https://doi.org/10.1016/j.neuint.2017.05.016

    Article  CAS  PubMed  Google Scholar 

  158. Behl T, Madaan P, Sehgal A et al (2022) Mechanistic Insights Expatiating the Redox-Active-Metal-Mediated Neuronal Degeneration in Parkinson’s Disease. Int J Mol Sci 23(2). https://doi.org/10.3390/ijms23020678

  159. MacLeod DA, Rhinn H, Kuwahara T et al (2013) RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson’s disease risk. Neuron 77(3):425–439. https://doi.org/10.1016/j.neuron.2012.11.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sowada N, Stiller B, Kubisch C (2016) Increased copper toxicity in Saccharomyces cerevisiae lacking VPS35, a component of the retromer and monogenic Parkinson disease gene in humans. Biochem Biophys Res Commun 476(4):528–533. https://doi.org/10.1016/j.bbrc.2016.05.157

    Article  CAS  PubMed  Google Scholar 

  161. Steinberg F, Gallon M, Winfield M et al (2013) A global analysis of SNX27-retromer assembly and cargo specificity reveals a function in glucose and metal ion transport. Nat Cell Biol 15(5):461–471. https://doi.org/10.1038/ncb2721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zhang H, Nagai J, Hao L, Jiang X (2023) Identification of key genes and immunological features Associated with Copper Metabolism in Parkinson’s disease by Bioinformatics Analysis. Mol Neurobiol. https://doi.org/10.1007/s12035-023-03565-8

    Article  PubMed  PubMed Central  Google Scholar 

  163. Hung LW, Villemagne VL, Cheng L et al (2012) The hypoxia imaging agent CuII(atsm) is neuroprotective and improves motor and cognitive functions in multiple animal models of Parkinson’s disease. J Exp Med 209(4):837–854. https://doi.org/10.1084/jem.20112285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Barthels D, Das H (2020) Current advances in ischemic stroke research and therapies. Biochim Biophys Acta Mol Basis Dis 1866(4):165260. https://doi.org/10.1016/j.bbadis.2018.09.012

    Article  CAS  PubMed  Google Scholar 

  165. Campbell BCV, Khatri P, Stroke (2020) Lancet 396(10244):129–142. https://doi.org/10.1016/S0140-6736(20)31179-X

    Article  PubMed  Google Scholar 

  166. Lin MC, Liu CC, Lin YC, Hsu CW (2022) Epigallocatechin Gallate modulates essential elements, Zn/Cu ratio, hazardous metal, lipid peroxidation, and antioxidant activity in the Brain cortex during cerebral ischemia. Antioxid (Basel) 11(2). https://doi.org/10.3390/antiox11020396

  167. Puig B, Brenna S, Magnus T (2018) Molecular Communication of a Dying Neuron in Stroke. Int J Mol Sci 19(9). https://doi.org/10.3390/ijms19092834

  168. Lin MC, Liu CC, Lin YC, Liao CS (2021) Resveratrol protects against cerebral ischemic Injury via restraining lipid peroxidation, transition elements, and toxic metal levels, but enhancing anti-oxidant activity. Antioxid (Basel) 10(10). https://doi.org/10.3390/antiox10101515

  169. Zhang M, Li W, Wang Y et al (2020) Association between the Change of Serum Copper and ischemic stroke: a systematic review and Meta-analysis. J Mol Neurosci 70(3):475–480. https://doi.org/10.1007/s12031-019-01441-6

    Article  CAS  PubMed  Google Scholar 

  170. Zhang C, Wang L, Guo Y, Feng W (2022) Systematic analysis of brain and skull ischemic injury expression profiles reveals associations of the tumor immune microenvironment and cell death with ischemic stroke. Front Immunol 13:1082546. https://doi.org/10.3389/fimmu.2022.1082546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Dyson A, Dal-Pizzol F, Sabbatini G et al (2017) Ammonium tetrathiomolybdate following ischemia/reperfusion injury: Chemistry, pharmacology, and impact of a new class of sulfide donor in preclinical injury models. PLoS Med 14(7):e1002310. https://doi.org/10.1371/journal.pmed.1002310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Bulcke F, Dringen R, Scheiber IF (2017) Neurotoxicity of copper. Adv Neurobiol 18:313–343. https://doi.org/10.1007/978-3-319-60189-2_16

    Article  PubMed  Google Scholar 

  173. Fox JH, Kama JA, Lieberman G et al (2007) Mechanisms of copper ion mediated Huntington’s disease progression. PLoS ONE 2(3):e334. https://doi.org/10.1371/journal.pone.0000334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Salzano G, Giachin G, Legname G (2019) Structural consequences of copper binding to the prion protein. Cells 8(8). https://doi.org/10.3390/cells8080770

  175. Alsiary RA, Alghrably M, Saoudi A et al (2020) Using NMR spectroscopy to investigate the role played by copper in prion diseases. Neurol Sci 41(9):2389–2406. https://doi.org/10.1007/s10072-020-04321-9

    Article  PubMed  PubMed Central  Google Scholar 

  176. Sarawi WS, Alhusaini AM, Fadda LM et al (2021) Curcumin and Nano-Curcumin mitigate copper neurotoxicity by modulating oxidative stress, inflammation, and Akt/GSK-3beta signaling. Molecules 26(18). https://doi.org/10.3390/molecules26185591

  177. Santos S, Silva AM, Matos M, Monteiro SM, Alvaro AR (2016) Copper induced apoptosis in Caco-2 and Hep-G2 cells: expression of caspases 3, 8 and 9, AIF and p53. Comp Biochem Physiol C Toxicol Pharmacol 185–186. https://doi.org/10.1016/j.cbpc.2016.03.010

  178. Xiang B, Li D, Chen Y et al (2021) Curcumin ameliorates Copper-Induced Neurotoxicity through inhibiting oxidative stress and mitochondrial apoptosis in SH-SY5Y cells. Neurochem Res 46(2):367–378. https://doi.org/10.1007/s11064-020-03173-1

    Article  CAS  PubMed  Google Scholar 

  179. Gao L, Zhang A (2023) Copper-instigated modulatory cell mortality mechanisms and progress in oncological treatment investigations. Front Immunol 14:1236063. https://doi.org/10.3389/fimmu.2023.1236063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Wan F, Zhong G, Ning Z et al (2020) Long-term exposure to copper induces autophagy and apoptosis through oxidative stress in rat kidneys. Ecotoxicol Environ Saf 190:110158. https://doi.org/10.1016/j.ecoenv.2019.110158

    Article  CAS  PubMed  Google Scholar 

  181. Xue Q, Kang R, Klionsky DJ et al (2023) Copper metabolism in cell death and autophagy. Autophagy 19(8):2175–2195. https://doi.org/10.1080/15548627.2023.2200554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Saporito-Magrina CM, Musacco-Sebio RN, Andrieux G et al (2018) Copper-induced cell death and the protective role of glutathione: the implication of impaired protein folding rather than oxidative stress. Metallomics 10(12):1743–1754. https://doi.org/10.1039/c8mt00182k

    Article  CAS  PubMed  Google Scholar 

  183. Liu H, Tang T (2022) Pan-cancer genetic analysis of cuproptosis and copper metabolism-related gene set. Front Oncol 12:952290. https://doi.org/10.3389/fonc.2022.952290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Solmonson A, DeBerardinis RJ (2018) Lipoic acid metabolism and mitochondrial redox regulation. J Biol Chem 293(20):7522–7530. https://doi.org/10.1074/jbc.TM117.000259

    Article  CAS  PubMed  Google Scholar 

  185. Cronan JE (2020) Progress in the enzymology of the mitochondrial diseases of Lipoic Acid requiring enzymes. Front Genet 11:510. https://doi.org/10.3389/fgene.2020.00510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Mayr JA, Zimmermann FA, Fauth C et al (2011) Lipoic acid synthetase deficiency causes neonatal-onset epilepsy, defective mitochondrial energy metabolism, and glycine elevation. Am J Hum Genet 89(6):792–797. https://doi.org/10.1016/j.ajhg.2011.11.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Saudino G, Ciofi-Baffoni S, Banci L (2022) Protein-Interaction Affinity gradient drives [4Fe-4S] cluster insertion in human lipoyl synthase. J Am Chem Soc 144(13):5713–5717. https://doi.org/10.1021/jacs.1c13626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Patel MS, Nemeria NS, Furey W, Jordan F (2014) The pyruvate dehydrogenase complexes: structure-based function and regulation. J Biol Chem 289(24):16615–16623. https://doi.org/10.1074/jbc.R114.563148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Balamurugan K, Egli D, Hua H et al (2007) Copper homeostasis in Drosophila by complex interplay of import, storage and behavioral avoidance. EMBO J 26(4):1035–1044. https://doi.org/10.1038/sj.emboj.7601543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Mates JM, Campos-Sandoval JA, Santos-Jimenez JL, Marquez J (2019) Dysregulation of glutaminase and glutamine synthetase in cancer. Cancer Lett 467:29–39. https://doi.org/10.1016/j.canlet.2019.09.011

    Article  CAS  PubMed  Google Scholar 

  191. Kreuger IZM, Slieker RC, van Groningen T, van Doorn R (2022) Therapeutic strategies for Targeting CDKN2A loss in Melanoma. J Invest Dermatol. https://doi.org/10.1016/j.jid.2022.07.016

    Article  PubMed  Google Scholar 

  192. Pal A, Potjer TP, Thomsen SK et al (2016) Loss-of-function mutations in the cell-cycle control gene CDKN2A impact on glucose homeostasis in humans. Diabetes 65(2):527–533. https://doi.org/10.2337/db15-0602

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No.82374326).

Author information

Authors and Affiliations

Authors

Contributions

Q.L. reviewed the published studies and composed the draft of the manuscript. F.L., J.L., and J.M. offered critical feedback on drafts of the manuscript. H.W. performed project administration. Y.H. initiated the idea, guided the article structure, obtained financial support, and improved the final manuscript.

Corresponding authors

Correspondence to Hai-tong Wan or Yu He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, Qm., Lai, Ff., Li, Jw. et al. Mechanisms of cuproptosis and its relevance to distinct diseases. Apoptosis (2024). https://doi.org/10.1007/s10495-024-01983-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10495-024-01983-0

Keywords

Navigation