Skip to main content
Log in

Cuproptosis in lung cancer: therapeutic options and prognostic models

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Lung cancer (LC) is a serious threat to mankind. The survival of LC patients is still poor despite the enormous efforts that have been made to develop novel treatments. A copper-dependent cell death termed cuproptosis is distinct from known programmed cell death (PCD). Cuproptosis is induced by the disruption of the binding of copper to lipoylated tricarboxylic acid (TCA) cycle proteins of mitochondrial respiratory chains. Potential approaches for treating LC are inducing cell cuproptosis and targeting cell copper death mechanisms. Thus, in this review, we summarize the systemic and cellular metabolic processes of copper. We highlight the possible therapeutic options of employing copper ionophores and chelators for inducing cuproptosis. Moreover, we summarize the prognostic models based on cuproptosis-related genes (CRGs) to identify promising biomarkers for tumor diagnosis and therapy. This review aims to provide a comprehensive summary of CRGs-based prognostic models and promising therapeutic options for cuproptosis induction in LC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

Abbreviations

ALDH2:

Aldehyde dehydrogenase 2

ATP7A:

ATPase copper transporting alpha

ATP7B:

ATPase copper transporting beta

BP:

Biological processes

MP:

Molecular processes

CDKN2A:

Cyclin-dependent kinase inhibitor 2 A

CRGs:

Cuproptosis-related genes

CuO-NPs:

Copper oxide nanoparticles

DLAT:

Drolipoamide S-acetyltransferase

DLD:

Dihydrolipoamide dehydrogenase

FDX1:

Ferredoxin 1

GEO:

Gene expression omnibus

GLS:

Glutaminase

GO:

Gene ontology

GTEx:

Genotype-tissue expression

HIF-1:

Hypoxia-inducible factor-1

IL-8:

Interleukin-8

KEGG:

Kyoto encyclopedia of genes and genomes

LC:

Lung cancer

LIAS:

Lipoic acid synthetase

LIPT1:

Lipoyltransferase 1

LOX:

Lysyl oxidase

MTF1:

Metal regulatory transcription factor 1

PCD:

Programmed cell death

PDC:

Pyruvate dehydrogenase complex

PDHA1:

Pyruvate dehydrogenase E1 subunit alpha 1

PDHB:

Pyruvate dehydrogenase E1 subunit beta

PD-L1:

Programmed death ligand 1

PLGA:

Poly lactic-co-glycolic acid

ROS:

Reactive oxygen species

SLC31A1:

Solute carrier family 31 member 1

TCA:

Tricarboxylic acid

TCGA:

The cancer genome atlas database

UCSC:

University of california santa cruz

VEGF:

Vascular endothelial growth factor

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics, 2021. CA Cancer J Clin 71(1):7–33

    Article  PubMed  Google Scholar 

  2. Ruiz-Cordero R, Devine WP (2020) Targeted therapy and checkpoint immunotherapy in Lung Cancer. Surg Pathol Clin 13(1):17–33

    Article  PubMed  Google Scholar 

  3. Xia C, Dong X, Li H, Cao M, Sun D, He S et al (2022) Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl) 135(5):584–590

    Article  PubMed  Google Scholar 

  4. Miller YE (2005) Pathogenesis of lung cancer: 100 year report. Am J Respir Cell Mol Biol 33(3):216–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang Y, Huang J, Wu Q, Zhang J, Ma Z, Ma S et al (2021) Downregulation of breast cancer resistance protein by long-term fractionated radiotherapy sensitizes lung adenocarcinoma to SN-38. Invest New Drugs 39(2):458–468

    Article  CAS  PubMed  Google Scholar 

  6. Osmani L, Askin F, Gabrielson E, Li QK (2018) Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): moving from targeted therapy to immunotherapy. Semin Cancer Biol 52(Pt 1):103–109

    Article  CAS  PubMed  Google Scholar 

  7. Testa U, Castelli G, Pelosi E (2018) Lung cancers: molecular characterization, clonal heterogeneity and evolution, and Cancer Stem cells. Cancers (Basel) 10(8)

  8. Ali A, Goffin JR, Arnold A, Ellis PM (2013) Survival of patients with non-small-cell lung cancer after a diagnosis of brain metastases. Curr Oncol 20(4):e300–e306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Howlader N, Noone AM, Krapcho M SEER cancer statistics review, 1975–2017

  10. Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G (2019) The molecular machinery of regulated cell death. Cell Res 29(5):347–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M et al (2022) Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375(6586):1254–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM et al (2022) Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer 22(2):102–113

    Article  CAS  PubMed  Google Scholar 

  13. Capriotti G, Piccardo A, Giovannelli E, Signore A (2022) Targeting copper in Cancer Imaging and Therapy: a New Theragnostic Agent. J Clin Med. ;12(1)

  14. Bost M, Houdart S, Oberli M, Kalonji E, Huneau JF, Margaritis I (2016) Dietary copper and human health: current evidence and unresolved issues. J Trace Elem Med Biol 35:107–115

    Article  CAS  PubMed  Google Scholar 

  15. Lonnerdal B (2008) Intestinal regulation of copper homeostasis: a developmental perspective. Am J Clin Nutr 88(3):846S–50S

    Article  CAS  PubMed  Google Scholar 

  16. Hernandez S, Tsuchiya Y, Garcia-Ruiz JP, Lalioti V, Nielsen S, Cassio D et al (2008) ATP7B copper-regulated traffic and association with the tight junctions: copper excretion into the bile. Gastroenterology 134(4):1215–1223

    Article  CAS  PubMed  Google Scholar 

  17. Zhang X, Yang Q (2018) Association between serum copper levels and lung cancer risk: a meta-analysis. J Int Med Res 46(12):4863–4873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Salvador F, Martin A, Lopez-Menendez C, Moreno-Bueno G, Santos V, Vazquez-Naharro A et al (2017) Lysyl oxidase-like protein LOXL2 promotes lung metastasis of breast Cancer. Cancer Res 77(21):5846–5859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Su Y, Zhang X, Li S, Xie W, Guo J (2022) Emerging roles of the Copper-CTR1 Axis in Tumorigenesis. Mol Cancer Res 20(9):1339–1353

    Article  CAS  PubMed  Google Scholar 

  20. Yu Z, Zhou R, Zhao Y, Pan Y, Liang H, Zhang JS et al (2019) Blockage of SLC31A1-dependent copper absorption increases pancreatic cancer cell autophagy to resist cell death. Cell Prolif 52(2):e12568

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yun Y, Wang Y, Yang E, Jing X (2022) Cuproptosis-related gene - SLC31A1, FDX1 and ATP7B - polymorphisms are Associated with risk of Lung Cancer. Pharmgenomics Pers Med 15:733–742

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu X, Boulet A, Buckley KM, Phillips CB, Gammon MG, Oldfather LE et al (2021) Mitochondrial copper and phosphate transporter specificity was defined early in the evolution of eukaryotes. Elife. ;10

  23. La Fontaine S, Ackland ML, Mercer JF (2010) Mammalian copper-transporting P-type ATPases, ATP7A and ATP7B: emerging roles. Int J Biochem Cell Biol 42(2):206–209

    Article  PubMed  Google Scholar 

  24. Grasso M, Bond GJ, Kim YJ, Boyd S, Matson Dzebo M, Valenzuela S et al (2021) The copper chaperone CCS facilitates copper binding to MEK1/2 to promote kinase activation. J Biol Chem 297(6):101314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu Q, Wang R, Ma H, Zhang Z, Xue Q (2022) Cuproptosis predicts the risk and clinical outcomes of lung adenocarcinoma. Front Oncol 12:922332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu Y, Lin W, Yang Y, Shao J, Zhao H, Wang G et al (2022) Role of cuproptosis-related gene in lung adenocarcinoma. Front Oncol 12:1080985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun X, Li Z, Meng F, Huang X, Wang J, Song J et al (2022) Cuproptosis associated genes affect prognosis and tumor microenvironment infiltration characterization in lung adenocarcinoma. Am J Cancer Res 12(10):4545–4565

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang S, Xing N, Meng X, Xiang L, Zhang Y (2022) Comprehensive bioinformatics analysis to identify a novel cuproptosis-related prognostic signature and its ceRNA regulatory axis and candidate traditional Chinese medicine active ingredients in lung adenocarcinoma. Front Pharmacol 13:971867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang H, Shi Y, Yi Q, Wang C, Xia Q, Zhang Y et al (2022) A novel defined cuproptosis-related gene signature for predicting the prognosis of lung adenocarcinoma. Front Genet 13:975185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang W, Qu H, Ma X, Li L, Wei Y, Wang Y et al (2023) Identification of cuproptosis and immune-related gene prognostic signature in lung adenocarcinoma. Front Immunol 14:1179742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Patel MS, Nemeria NS, Furey W, Jordan F (2014) The pyruvate dehydrogenase complexes: structure-based function and regulation. J Biol Chem 289(24):16615–16623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zheng P, Zhou C, Lu L, Liu B, Ding Y (2022) Elesclomol: a copper ionophore targeting mitochondrial metabolism for cancer therapy. J Exp Clin Cancer Res 41(1):271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jiao Y, Hannafon BN, Ding WQ (2016) Disulfiram’s anticancer activity: evidence and mechanisms. Anticancer Agents Med Chem 16(11):1378–1384

    Article  CAS  PubMed  Google Scholar 

  34. Wangpaichitr M, Wu C, You M, Maher JC, Dinh V, Feun LG et al (2009) N’,N’-Dimethyl-N’,N’-bis(phenylcarbonothioyl) propanedihydrazide (Elesclomol) selectively kills cisplatin resistant lung Cancer cells through reactive oxygen species (ROS). Cancers (Basel) 1(1):23–38

    Article  CAS  PubMed  Google Scholar 

  35. Wang W, Wang J, Liu S, Ren Y, Wang J, Liu S et al (2022) An EHMT2/NFYA-ALDH2 signaling axis modulates the RAF pathway to regulate paclitaxel resistance in lung cancer. Mol Cancer 21(1):106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nechushtan H, Hamamreh Y, Nidal S, Gotfried M, Baron A, Shalev YI et al (2015) A phase IIb trial assessing the addition of disulfiram to chemotherapy for the treatment of metastatic non-small cell lung cancer. Oncologist 20(4):366–367

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang C, Yang J, Han H, Chen J, Wang Y, Li Q et al (2017) Disulfiram-loaded porous PLGA microparticle for inhibiting the proliferation and migration of non-small-cell lung cancer. Int J Nanomed 12:827–837

    Article  CAS  Google Scholar 

  38. Lowndes SA, Harris AL (2005) The role of copper in tumour angiogenesis. J Mammary Gland Biol Neoplasia 10:299–310

    Article  PubMed  Google Scholar 

  39. Salvo J, Sandoval C (2022) Role of copper nanoparticles in wound healing for chronic wounds: literature review. Burns Trauma. ;10

  40. Sciegienka SJ, Solst SR, Falls KC, Schoenfeld JD, Klinger AR, Ross NL et al (2017) D-penicillamine combined with inhibitors of hydroperoxide metabolism enhances lung and breast cancer cell responses to radiation and carboplatin via H(2)O(2)-mediated oxidative stress. Free Radic Biol Med 108:354–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Singh J, Kaur G, Rawat M (2016) A brief review on synthesis and characterization of copper oxide nanoparticles and its applications. J Bioelectron Nanotechnol. ;1(9)

  42. Meghana S, Kabra P, Chakraborty S, Padmavathy N (2015) Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv 5(16):12293–12299

    Article  CAS  Google Scholar 

  43. Zhao H, Maruthupandy M, Al-mekhlafi FA, Chackaravarthi G, Ramachandran G, Chelliah CK (2022) Biological synthesis of copper oxide nanoparticles using marine endophytic actinomycetes and evaluation of biofilm producing bacteria and A549 lung cancer cells. J King Saud Univ - Sci 34(3):101866

    Article  Google Scholar 

  44. Voli F, Valli E, Lerra L, Kimpton K, Saletta F, Giorgi FM et al (2020) Intratumoral Copper modulates PD-L1 expression and influences Tumor Immune Evasion. Cancer Res 80(19):4129–4144

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

RJ: Conceptualization, writing, and illustrating. HB: Review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Rohil Jawed.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jawed, R., Bhatti, H. Cuproptosis in lung cancer: therapeutic options and prognostic models. Apoptosis (2024). https://doi.org/10.1007/s10495-024-01978-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10495-024-01978-x

Keywords

Navigation