Skip to main content
Log in

Triptolide induces PANoptosis in macrophages and causes organ injury in mice

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Macrophages represent the first lines of innate defense against pathogenic infections and are poised to undergo multiple forms of regulated cell death (RCD) upon infections or toxic stimuli, leading to multiple organ injury. Triptolide, an active compound isolated from Tripterygium wilfordii Hook F., possesses various pharmacological activities including anti-tumor and anti-inflammatory effects, but its applications have been hampered by toxic adverse effects. It remains unknown whether and how triptolide induces different forms of RCD in macrophages. In this study, we showed that triptolide exhibited significant cytotoxicity on cultured macrophages in vitro, which was associated with multiple forms of lytic cell death that could not be fully suppressed by any one specific inhibitor for a single form of RCD. Consistently, triptolide induced the simultaneous activation of pyroptotic, apoptotic and necroptotic hallmarks, which was accompanied by the co-localization of ASC specks respectively with RIPK3 or caspase-8 as well as their interaction with each other, indicating the formation of PANoptosome and thus the induction of PANoptosis. Triptolide-induced PANoptosis was associated with mitochondrial dysfunction and ROS production. PANoptosis was also induced by triptolide in mouse peritoneal macrophages in vivo. Furthermore, triptolide caused kidney and liver injury, which was associated with systemic inflammatory responses and the activation of hallmarks for PANoptosis in vivo. Collectively, our data reveal that triptolide induces PANoptosis in macrophages in vitro and exhibits nephrotoxicity and hepatotoxicity associated with induction of PANoptosis in vivo, suggesting a new avenue to alleviate triptolide’s toxicity by harnessing PANoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

All data of this study have been presented in the manuscript. All materials were obtained from commercial resources.

References

  1. Liu QY (2011) Triptolide and its expanding multiple pharmacological functions. Int Immunopharmacol 11:377–383. https://doi.org/10.1016/j.intimp.2011.01.012

    Article  CAS  PubMed  Google Scholar 

  2. Kupchan SM, Court WA, Dailey RG Jr, Gilmore CJ, Bryan RF (1972) Triptolide and tripdiolide, novel antileukemic diterpenoid triepoxides from Tripterygium wilfordii. J Am Chem Soc 94:7194–7195. https://doi.org/10.1021/ja00775a078

    Article  CAS  PubMed  Google Scholar 

  3. Ji B, Cai Z, Liu D, Ding Y, Zhang Y, Naranmandakh S et al (2022) A worldwide bibliometric analysis of triptolide research from 1997 to 2021. Am J Transl Res 14:7290–7307

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Matta R, Wang X, Ge H, Ray W, Nelin LD, Liu Y (2009) Triptolide induces anti-inflammatory cellular responses. Am J Transl Res 1:267–282

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Han R, Rostami-Yazdi M, Gerdes S, Mrowietz U (2012) Triptolide in the treatment of psoriasis and other immune-mediated inflammatory diseases. Br J Clin Pharmacol 74:424–436. https://doi.org/10.1111/j.1365-2125.2012.04221.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ziaei S, Halaby R (2016) Immunosuppressive, anti-inflammatory and anti-cancer properties of triptolide: A mini review. Avicenna J Phytomed 6:149–164

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Fan D, Guo Q, Shen J, Zheng K, Lu C, Zhang G et al (2018) The Effect of Triptolide in Rheumatoid Arthritis: From Basic Research towards Clinical Translation. Int J Mol Sci 19:376. https://doi.org/10.3390/ijms19020376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huo J, Yu Q, Zhang Y, Liu K, Hsiao CD, Jiang Z et al (2019) Triptolide-induced hepatotoxicity via apoptosis and autophagy in zebrafish. J Appl Toxicol 39:1532–1540. https://doi.org/10.1002/jat.3837

    Article  CAS  PubMed  Google Scholar 

  9. Yuan Z, Hasnat M, Liang P, Yuan Z, Zhang H, Sun L, et al. (2019) The role of inflammasome activation in Triptolide-induced acute liver toxicity. Int Immunopharmacol 75:105754. https://dx.doi.org/https://doi.org/10.1016/j.intimp.2019.105754

  10. Yuan Z, Yuan Z, Hasnat M, Zhang H, Liang P, Sun L et al (2020) A new perspective of triptolide-associated hepatotoxicity: the relevance of NF- κ B and NF- κ B-mediated cellular FLICE-inhibitory protein. Acta Pharm Sin B 10:861–877. https://doi.org/10.1016/j.apsb.2020.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cheng Y, Chen G, Wang L, Kong J, Pan J, Xi Y et al (2018) Triptolide-induced mitochondrial damage dysregulates fatty acid metabolism in mouse sertoli cells. Toxicol Lett 292:136–150. https://doi.org/10.1016/j.toxlet.2018.04.035

    Article  CAS  PubMed  Google Scholar 

  12. Lv L, Chang Y, Li Y, Chen H, Yao J, Xie Y, et al. (2021) Triptolide Induces Leydig Cell Apoptosis by Disrupting Mitochondrial Dynamics in Rats. Front Pharmacol 12:616803. https://dx.doi.org/https://doi.org/10.3389/fphar.2021.616803

  13. Lu J, Zhang Y, Dong H, Sun J, Zhu L, Liu P et al (2022) New mechanism of nephrotoxicity of triptolide: Oxidative stress promotes cGAS-STING signaling pathway. Free Radic Biol Med 188:26–34. https://doi.org/10.1016/j.freeradbiomed.2022.06.009

    Article  CAS  PubMed  Google Scholar 

  14. Ginhoux F, Jung S (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14:392–404. https://doi.org/10.1038/nri3671

    Article  CAS  PubMed  Google Scholar 

  15. Bonnardel J, Guilliams M (2018) Developmental control of macrophage function. Curr Opin Immunol 50:64–74. https://doi.org/10.1016/j.coi.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  16. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555. https://doi.org/10.1016/s1471-4906(02)02302-5

    Article  CAS  PubMed  Google Scholar 

  17. Mass E, Ballesteros I, Farlik M, Halbritter F, Günther P, Crozet L, et al. (2016) Specification of tissue-resident macrophages during organogenesis. Science 353:aaf4238. https://dx.doi.org/https://doi.org/10.1126/science.aaf4238

  18. Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M et al (2013) Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38:792–804. https://doi.org/10.1016/j.immuni.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  19. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X et al (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088. https://doi.org/10.1126/science.282.5396.2085

    Article  CAS  PubMed  Google Scholar 

  20. Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54(Pt 1):1–13. https://doi.org/10.1101/sqb.1989.054.01.003

    Article  CAS  PubMed  Google Scholar 

  21. Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045. https://doi.org/10.1146/annurev.iy.12.040194.005015

    Article  CAS  PubMed  Google Scholar 

  22. Cao X (2016) Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat Rev Immunol 16:35–50. https://doi.org/10.1038/nri.2015.8

    Article  CAS  PubMed  Google Scholar 

  23. Vijay K (2018) Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int Immunopharmacol 59:391–412. https://doi.org/10.1016/j.intimp.2018.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gong T, Liu L, Jiang W, Zhou R (2020) DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol 20:95–112. https://doi.org/10.1038/s41577-019-0215-7

    Article  CAS  PubMed  Google Scholar 

  25. Beckwith KS, Beckwith MS, Ullmann S, Sætra RS, Kim H, Marstad A et al (2020) Plasma membrane damage causes NLRP3 activation and pyroptosis during Mycobacterium tuberculosis infection. Nat Commun 11:2270. https://doi.org/10.1038/s41467-020-16143-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu X, Xia S, Zhang Z, Wu H, Lieberman J (2021) Channelling inflammation: gasdermins in physiology and disease. Nat Rev Drug Discov 20:384–405. https://doi.org/10.1038/s41573-021-00154-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–665. https://doi.org/10.1038/nature15514

    Article  CAS  PubMed  Google Scholar 

  28. Simpson DS, Pang J, Weir A, Kong IY, Fritsch M, Rashidi M et al (2022) Interferon-γ primes macrophages for pathogen ligand-induced killing via a caspase-8 and mitochondrial cell death pathway. Immunity 55:423-441.e429. https://doi.org/10.1016/j.immuni.2022.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stutz MD, Allison CC, Ojaimi S, Preston SP, Doerflinger M, Arandjelovic P et al (2021) Macrophage and neutrophil death programs differentially confer resistance to tuberculosis. Immunity 54:1758-1771.e1757. https://doi.org/10.1016/j.immuni.2021.06.009

    Article  CAS  PubMed  Google Scholar 

  30. Ye J, Zeng B, Zhong M, Li H, Xu L, Shu J et al (2021) Scutellarin inhibits caspase-11 activation and pyroptosis in macrophages via regulating PKA signaling. Acta Pharm Sin B 11:112–126. https://doi.org/10.1016/j.apsb.2020.07.014

    Article  CAS  PubMed  Google Scholar 

  31. Simion V, Zhou H, Haemmig S, Pierce JB, Mendes S, Tesmenitsky Y et al (2020) A macrophage-specific lncRNA regulates apoptosis and atherosclerosis by tethering HuR in the nucleus. Nat Commun 11:6135. https://doi.org/10.1038/s41467-020-19664-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Deng C, Zhang Q, He P, Zhou B, He K, Sun X et al (2021) Targeted apoptosis of macrophages and osteoclasts in arthritic joints is effective against advanced inflammatory arthritis. Nat Commun 12:2174. https://doi.org/10.1038/s41467-021-22454-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McIlwain DR, Berger T, Mak TW (2013) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 5:a008656. https://dx.doi.org/https://doi.org/10.1101/cshperspect.a008656

  34. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413. https://doi.org/10.1016/s0092-8674(00)80501-2

    Article  CAS  PubMed  Google Scholar 

  35. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157. https://doi.org/10.1016/s0092-8674(00)80085-9

    Article  CAS  PubMed  Google Scholar 

  36. Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J (1993) Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75:653–660. https://doi.org/10.1016/0092-8674(93)90486-a

    Article  CAS  PubMed  Google Scholar 

  37. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75:641–652. https://doi.org/10.1016/0092-8674(93)90485-9

    Article  CAS  PubMed  Google Scholar 

  38. Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M et al (2000) tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14:2060–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R et al (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331–342. https://doi.org/10.1016/s0092-8674(02)01036-x

    Article  CAS  PubMed  Google Scholar 

  40. Wang Y, Gao W, Shi X, Ding J, Liu W, He H et al (2017) Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547:99–103. https://doi.org/10.1038/nature22393

    Article  CAS  PubMed  Google Scholar 

  41. Yang ZH, Wu XN, He P, Wang X, Wu J, Ai T et al (2020) A Non-canonical PDK1-RSK Signal Diminishes Pro-caspase-8-Mediated Necroptosis Blockade. Mol Cell 80:296-310.e296. https://doi.org/10.1016/j.molcel.2020.09.004

    Article  CAS  PubMed  Google Scholar 

  42. Jiao H, Wachsmuth L, Kumari S, Schwarzer R, Lin J, Eren RO et al (2020) Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation. Nature 580:391–395. https://doi.org/10.1038/s41586-020-2129-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang T, Yin C, Boyd DF, Quarato G, Ingram JP, Shubina M et al (2020) Influenza Virus Z-RNAs Induce ZBP1-Mediated Necroptosis. Cell 180:1115-1129.e1113. https://doi.org/10.1016/j.cell.2020.02.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Su Z, Yang Z, Xie L, DeWitt JP, Chen Y (2016) Cancer therapy in the necroptosis era. Cell Death Differ 23:748–756. https://doi.org/10.1038/cdd.2016.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501. https://doi.org/10.1016/s0092-8674(00)81590-1

    Article  CAS  PubMed  Google Scholar 

  46. Muzio M, Chinnaiyan AM, Kischkel FC, O’Rourke K, Shevchenko A, Ni J et al (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death–inducing signaling complex. Cell 85:817–827. https://doi.org/10.1016/s0092-8674(00)81266-0

    Article  CAS  PubMed  Google Scholar 

  47. Kang TB, Ben-Moshe T, Varfolomeev EE, Pewzner-Jung Y, Yogev N, Jurewicz A et al (2004) Caspase-8 serves both apoptotic and nonapoptotic roles. J Immunol 173:2976–2984. https://doi.org/10.4049/jimmunol.173.5.2976

    Article  CAS  PubMed  Google Scholar 

  48. Newton K, Wickliffe KE, Dugger DL, Maltzman A, Roose-Girma M, Dohse M et al (2019) Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature 574:428–431. https://doi.org/10.1038/s41586-019-1548-x

    Article  CAS  PubMed  Google Scholar 

  49. O’Donnell MA, Perez-Jimenez E, Oberst A, Ng A, Massoumi R, Xavier R et al (2011) Caspase 8 inhibits programmed necrosis by processing CYLD. Nat Cell Biol 13:1437–1442. https://doi.org/10.1038/ncb2362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Feng S, Yang Y, Mei Y, Ma L, Zhu DE, Hoti N et al (2007) Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal 19:2056–2067. https://doi.org/10.1016/j.cellsig.2007.05.016

    Article  CAS  PubMed  Google Scholar 

  51. Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J et al (2012) Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci U S A 109:5322–5327. https://doi.org/10.1073/pnas.1200012109

    Article  PubMed  PubMed Central  Google Scholar 

  52. Orning P, Weng D, Starheim K, Ratner D, Best Z, Lee B et al (2018) Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science 362:1064–1069. https://doi.org/10.1126/science.aau2818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sarhan J, Liu BC, Muendlein HI, Li P, Nilson R, Tang AY et al (2018) Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc Natl Acad Sci U S A 115:E10888-e10897. https://doi.org/10.1073/pnas.1809548115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Puri AW, Broz P, Shen A, Monack DM, Bogyo M (2012) Caspase-1 activity is required to bypass macrophage apoptosis upon Salmonella infection. Nat Chem Biol 8:745–747. https://doi.org/10.1038/nchembio.1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rogers C, Erkes DA, Nardone A, Aplin AE, Fernandes-Alnemri T, Alnemri ES (2019) Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat Commun 10:1689. https://doi.org/10.1038/s41467-019-09397-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Malireddi RKS, Kesavardhana S, Kanneganti TD (2019) ZBP1 and TAK1: Master Regulators of NLRP3 Inflammasome/Pyroptosis, Apoptosis, and Necroptosis (PAN-optosis). Front Cell Infect Microbiol 9:406. https://doi.org/10.3389/fcimb.2019.00406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Malireddi RKS, Kesavardhana S, Karki R, Kancharana B, Burton AR, Kanneganti TD (2020) RIPK1 Distinctly Regulates Yersinia-Induced Inflammatory Cell Death, PANoptosis. Immunohorizons 4:789–796. https://doi.org/10.4049/immunohorizons.2000097

    Article  CAS  PubMed  Google Scholar 

  58. Malireddi RKS, Karki R, Sundaram B, Kancharana B, Lee S, Samir P et al (2021) Inflammatory Cell Death, PANoptosis, Mediated by Cytokines in Diverse Cancer Lineages Inhibits Tumor Growth. Immunohorizons 5:568–580. https://doi.org/10.4049/immunohorizons.2100059

    Article  CAS  PubMed  Google Scholar 

  59. Karki R, Sundaram B, Sharma BR, Lee S, Malireddi RKS, Nguyen LN, et al. (2021) ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Rep 37:109858. https://dx.doi.org/https://doi.org/10.1016/j.celrep.2021.109858

  60. Christgen S, Zheng M, Kesavardhana S, Karki R, Malireddi RKS, Banoth B et al (2020) Identification of the PANoptosome: A Molecular Platform Triggering Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Front Cell Infect Microbiol 10:237. https://doi.org/10.3389/fcimb.2020.00237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee S, Karki R, Wang Y, Nguyen LN, Kalathur RC, Kanneganti TD (2021) AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature 597:415–419. https://doi.org/10.1038/s41586-021-03875-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kesavardhana S, Malireddi RKS, Burton AR, Porter SN, Vogel P, Pruett-Miller SM et al (2020) The Zα2 domain of ZBP1 is a molecular switch regulating influenza-induced PANoptosis and perinatal lethality during development. J Biol Chem 295:8325–8330. https://doi.org/10.1074/jbc.RA120.013752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Banoth B, Tuladhar S, Karki R, Sharma BR, Briard B, Kesavardhana S et al (2020) ZBP1 promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis). J Biol Chem 295:18276–18283. https://doi.org/10.1074/jbc.RA120.015924

    Article  CAS  PubMed  Google Scholar 

  64. Zheng M, Williams EP, Malireddi RKS, Karki R, Banoth B, Burton A et al (2020) Impaired NLRP3 inflammasome activation/pyroptosis leads to robust inflammatory cell death via caspase-8/RIPK3 during coronavirus infection. J Biol Chem 295:14040–14052. https://doi.org/10.1074/jbc.RA120.015036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lukens JR, Gurung P, Vogel P, Johnson GR, Carter RA, McGoldrick DJ et al (2014) Dietary modulation of the microbiome affects autoinflammatory disease. Nature 516:246–249. https://doi.org/10.1038/nature13788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kuriakose T, Man SM, Malireddi RK, Karki R, Kesavardhana S, Place DE, et al. (2016) ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci Immunol 1:aag2045. https://dx.doi.org/https://doi.org/10.1126/sciimmunol.aag2045

  67. Zeng B, Huang Y, Chen S, Xu R, Xu L, Qiu J et al (2022) Dextran sodium sulfate potentiates NLRP3 inflammasome activation by modulating the KCa3.1 potassium channel in a mouse model of colitis. Cell Mol Immunol 19:925–943. https://doi.org/10.1038/s41423-022-00891-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhong CS, Zeng B, Qiu JH, Xu LH, Zhong MY, Huang YT et al (2022) Gout-associated monosodium urate crystal-induced necrosis is independent of NLRP3 activity but can be suppressed by combined inhibitors for multiple signaling pathways. Acta Pharmacol Sin 43:1324–1336. https://doi.org/10.1038/s41401-021-00749-7

    Article  CAS  PubMed  Google Scholar 

  69. Zhong M, Huang Y, Zeng B, Xu L, Zhong C, Qiu J et al (2022) Induction of multiple subroutines of regulated necrosis in murine macrophages by natural BH3-mimetic gossypol. Acta Biochim Biophys Sin (Shanghai) 54:64–76. https://doi.org/10.3724/abbs.2021004

    Article  CAS  PubMed  Google Scholar 

  70. Huang YT, Liang QQ, Zhang HR, Chen SY, Xu LH, Zeng B, et al. (2022) Baicalin inhibits necroptosis by decreasing oligomerization of phosphorylated MLKL and mitigates caerulein-induced acute pancreatitis in mice. Int Immunopharmacol 108:108885. https://dx.doi.org/https://doi.org/10.1016/j.intimp.2022.108885

  71. Jin J, Sun X, Zhao Z, Wang W, Qiu Y, Fu X, et al. (2015) Activation of the farnesoid X receptor attenuates triptolide-induced liver toxicity. Phytomedicine.

  72. Xi C, Peng S, Wu Z, Zhou Q, Zhou J (2017) Toxicity of triptolide and the molecular mechanisms involved. Biomed Pharmacother 90:531–541. https://doi.org/10.1016/j.biopha.2017.04.003

    Article  CAS  PubMed  Google Scholar 

  73. Xu L, Qiu Y, Xu H, Ao W, Lam W, Yang X (2013) Acute and subacute toxicity studies on triptolide and triptolide-loaded polymeric micelles following intravenous administration in rodents. Food Chem Toxicol 57:371–379. https://doi.org/10.1016/j.fct.2013.03.044

    Article  CAS  PubMed  Google Scholar 

  74. Yu D, Liu Y, Zhou Y, Ruiz-Rodado V, Larion M, Xu G et al (2020) Triptolide suppresses IDH1-mutated malignancy via Nrf2-driven glutathione metabolism. Proc Natl Acad Sci U S A 117:9964–9972. https://doi.org/10.1073/pnas.1913633117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tong L, Zhao Q, Datan E, Lin GQ, Minn I, Pomper MG et al (2021) Triptolide: reflections on two decades of research and prospects for the future. Nat Prod Rep 38:843–860. https://doi.org/10.1039/d0np00054j

    Article  CAS  PubMed  Google Scholar 

  76. Noel P, Von Hoff DD, Saluja AK, Velagapudi M, Borazanci E, Han H (2019) Triptolide and Its Derivatives as Cancer Therapies. Trends Pharmacol Sci 40:327–341. https://doi.org/10.1016/j.tips.2019.03.002

    Article  CAS  PubMed  Google Scholar 

  77. Le Feuvre RA, Brough D, Iwakura Y, Takeda K, Rothwell NJ (2002) Priming of macrophages with lipopolysaccharide potentiates P2X7-mediated cell death via a caspase-1-dependent mechanism, independently of cytokine production. J Biol Chem 277:3210–3218. https://doi.org/10.1074/jbc.M104388200

    Article  CAS  PubMed  Google Scholar 

  78. Wu J, Huang Z, Ren J, Zhang Z, He P, Li Y et al (2013) Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res 23:994–1006. https://doi.org/10.1038/cr.2013.91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H et al (2021) DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 593:586–590. https://doi.org/10.1038/s41586-021-03539-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pandian N, Kanneganti TD (2022) PANoptosis: A Unique Innate Immune Inflammatory Cell Death Modality. J Immunol 209:1625–1633. https://doi.org/10.4049/jimmunol.2200508

    Article  CAS  PubMed  Google Scholar 

  81. Zhong Z, Liang S, Sanchez-Lopez E, He F, Shalapour S, Lin XJ et al (2018) New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 560:198–203. https://doi.org/10.1038/s41586-018-0372-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xue B, Jiao J, Zhang L, Li KR, Gong YT, Xie JX et al (2007) Triptolide upregulates NGF synthesis in rat astrocyte cultures. Neurochem Res 32:1113–1119. https://doi.org/10.1007/s11064-006-9253-1

    Article  CAS  PubMed  Google Scholar 

  83. Wang X, Jiang Z, Cao W, Yuan Z, Sun L, Zhang L (2014) Th17/Treg imbalance in triptolide-induced liver injury. Fitoterapia 93:245–251. https://doi.org/10.1016/j.fitote.2014.01.006

    Article  CAS  PubMed  Google Scholar 

  84. Bai S, Hu Z, Yang Y, Yin Y, Li W, Wu L et al (2016) Anti-Inflammatory and Neuroprotective Effects of Triptolide via the NF-κB Signaling Pathway in a Rat MCAO Model. Anat Rec (Hoboken) 299:256–266. https://doi.org/10.1002/ar.23293

    Article  CAS  PubMed  Google Scholar 

  85. Tao X, Lipsky PE (2000) The Chinese anti-inflammatory and immunosuppressive herbal remedy Tripterygium wilfordii Hook F. Rheum Dis Clin North Am 26:29–50, viii. https://dx.doi.org/https://doi.org/10.1016/s0889-857x(05)70118-6

  86. Liu Q, Chen T, Chen G, Li N, Wang J, Ma P et al (2006) Immunosuppressant triptolide inhibits dendritic cell-mediated chemoattraction of neutrophils and T cells through inhibiting Stat3 phosphorylation and NF-kappaB activation. Biochem Biophys Res Commun 345:1122–1130. https://doi.org/10.1016/j.bbrc.2006.05.024

    Article  CAS  PubMed  Google Scholar 

  87. Jiang N, Quan L, Zhou Y, Cheng Y, Li H, Chen X, et al. (2022) Exploring the anti-influenza virus activity of novel triptolide derivatives targeting nucleoproteins. Bioorg Chem 129:106118. https://dx.doi.org/https://doi.org/10.1016/j.bioorg.2022.106118

  88. Corson TW, Cavga H, Aberle N, Crews CM (2011) Triptolide directly inhibits dCTP pyrophosphatase. ChemBioChem 12:1767–1773. https://doi.org/10.1002/cbic.201100007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Place DE, Christgen S, Tuladhar S, Vogel P, Malireddi RKS, Kanneganti TD (2021) Hierarchical Cell Death Program Disrupts the Intracellular Niche Required for Burkholderia thailandensis Pathogenesis. mBio 12:e0105921. https://dx.doi.org/https://doi.org/10.1128/mBio.01059-21

  90. Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P et al (2021) Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell 184:149-168.e117. https://doi.org/10.1016/j.cell.2020.11.025

    Article  CAS  PubMed  Google Scholar 

  91. Yuan F, Cai J, Wu J, Tang Y, Zhao K, Liang F et al (2022) Z-DNA binding protein 1 promotes heatstroke-induced cell death. Science 376:609–615. https://doi.org/10.1126/science.abg5251

    Article  CAS  PubMed  Google Scholar 

  92. Roca FJ, Whitworth LJ, Prag HA, Murphy MP, Ramakrishnan L (2022) Tumor necrosis factor induces pathogenic mitochondrial ROS in tuberculosis through reverse electron transport. Science 376:eabh2841. https://dx.doi.org/https://doi.org/10.1126/science.abh2841

  93. Zhang Y, Su SS, Zhao S, Yang Z, Zhong CQ, Chen X et al (2017) RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome. Nat Commun 8:14329. https://doi.org/10.1038/ncomms14329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hu Y, Wu Q, Wang Y, Zhang H, Liu X, Zhou H, et al. (2022) The molecular pathogenesis of triptolide-induced hepatotoxicity. Front Pharmacol 13:979307. https://dx.doi.org/https://doi.org/10.3389/fphar.2022.979307

  95. Hasnat M, Yuan Z, Naveed M, Khan A, Raza F, Xu D et al (2019) Drp1-associated mitochondrial dysfunction and mitochondrial autophagy: a novel mechanism in triptolide-induced hepatotoxicity. Cell Biol Toxicol 35:267–280. https://doi.org/10.1007/s10565-018-9447-8

    Article  CAS  PubMed  Google Scholar 

  96. Hou W, Liu B, Xu H (2019) Triptolide: Medicinal chemistry, chemical biology and clinical progress. Eur J Med Chem 176:378–392. https://doi.org/10.1016/j.ejmech.2019.05.032

    Article  CAS  PubMed  Google Scholar 

  97. Dixon LJ, Barnes M, Tang H, Pritchard MT, Nagy LE (2013) Kupffer cells in the liver. Compr Physiol 3:785–797. https://doi.org/10.1002/cphy.c120026

    Article  PubMed  PubMed Central  Google Scholar 

  98. Gao B, Jeong WI, Tian Z (2008) Liver: An organ with predominant innate immunity. Hepatology 47:729–736. https://doi.org/10.1002/hep.22034

    Article  CAS  PubMed  Google Scholar 

  99. Bouwens L, Baekeland M, De Zanger R, Wisse E (1986) Quantitation, tissue distribution and proliferation kinetics of Kupffer cells in normal rat liver. Hepatology 6:718–722. https://doi.org/10.1002/hep.1840060430

    Article  CAS  PubMed  Google Scholar 

  100. Jiang WJ, Xu CT, Du CL, Dong JH, Xu SB, Hu BF et al (2022) Tubular epithelial cell-to-macrophage communication forms a negative feedback loop via extracellular vesicle transfer to promote renal inflammation and apoptosis in diabetic nephropathy. Theranostics 12:324–339. https://doi.org/10.7150/thno.63735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Krausgruber T, Fortelny N, Fife-Gernedl V, Senekowitsch M, Schuster LC, Lercher A et al (2020) Structural cells are key regulators of organ-specific immune responses. Nature 583:296–302. https://doi.org/10.1038/s41586-020-2424-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schleimer RP, Kato A, Kern R, Kuperman D, Avila PC (2007) Epithelium: at the interface of innate and adaptive immune responses. J Allergy Clin Immunol 120:1279–1284. https://doi.org/10.1016/j.jaci.2007.08.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82274167, 81873064 and 81773965), the Funding of Science and Technology Projects in Guangzhou (202201020083), and the Medical Scientific Research Foundation of Guangdong Province, China (B2021116). We also thank Prof. Yong-tang Zheng (Kunming Institute of Zoology, Chinese Academy of Sciences) for his kindly help in this study.

Funding

This work was supported by the National Natural Science Foundation of China (82274167, 81873064 and 81773965), the Funding of Science and Technology Projects in Guangzhou (202201020083), and the Medical Scientific Research Foundation of Guangdong Province, China (B2021116).

Author information

Authors and Affiliations

Authors

Contributions

H.R.Z., Y.P.L., Z.J.S., Q.Q.L., and S.Y.C. performed the in vitro research. Y.P.Y., T.Y., R.X., and L.H.X. carried out the animal experiments. X.H.H. and Q.B.Z. conceived and supervised the project. H.R.Z. and X.H.H. designed this study. H.R.Z. and X.H.H. analyzed the data. H.R.Z., X.H.H. and D.Y.O. prepared and edited the manuscript. All authors approved the submission.

Corresponding authors

Correspondence to Dong-Yun Ouyang, Qing-Bing Zha or Xian-Hui He.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Animal experiments were performed with the approval of and in compliance with the guidelines for the care and use of animals approved by the Committee on the Ethics of Animal Experiments of Jinan University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3603 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HR., Li, YP., Shi, ZJ. et al. Triptolide induces PANoptosis in macrophages and causes organ injury in mice. Apoptosis 28, 1646–1665 (2023). https://doi.org/10.1007/s10495-023-01886-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01886-6

Keywords

Navigation