Skip to main content

Advertisement

Log in

SARS-CoV-2 envelope protein induces necroptosis and mediates inflammatory response in lung and colon cells through receptor interacting protein kinase 1

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

SARS-CoV-2 Envelope protein (E) is one of the crucial components in virus assembly and pathogenesis. The current study investigated its role in the SARS-CoV-2-mediated cell death and inflammation in lung and gastrointestinal epithelium and its effect on the gastrointestinal-lung axis. We observed that transfection of E protein increases the lysosomal pH and induces inflammation in the cell. The study utilizing Ethidium bromide/Acridine orange and Hoechst/Propidium iodide staining demonstrated necrotic cell death in E protein transfected cells. Our study revealed the role of the necroptotic marker RIPK1 in cell death. Additionally, inhibition of RIPK1 by its specific inhibitor Nec-1s exhibits recovery from cell death and inflammation manifested by reduced phosphorylation of NFκB. The E-transfected cells’ conditioned media induced inflammation with differential expression of inflammatory markers compared to direct transfection in the gastrointestinal-lung axis. In conclusion, SARS-CoV-2 E mediates inflammation and necroptosis through RIPK1, and the E-expressing cells’ secretion can modulate the gastrointestinal-lung axis. Based on the data of the present study, we believe that during severe COVID-19, necroptosis is an alternate mechanism of cell death besides ferroptosis, especially when the disease is not associated with drastic increase in serum ferritin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study can be availed from the corresponding author on reasonable request.

References

  1. Brevini T, Maes M, Webb GJ et al (2023) FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2. Nature 615:134–142. https://doi.org/10.1038/s41586-022-05594-0

    Article  CAS  PubMed  Google Scholar 

  2. Yan W, Zheng Y, Zeng X et al (2022) Structural biology of SARS-CoV-2: open the door for novel therapies. Sig Transduct Target Ther 7:26. https://doi.org/10.1038/s41392-022-00884-5

    Article  CAS  Google Scholar 

  3. Jakhmola S, Indari O, Kashyap D et al (2020) Recent updates on COVID-19: a holistic review. Heliyon 6:e05706. https://doi.org/10.1016/j.heliyon.2020.e05706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yadav R, Chaudhary JK, Jain N et al (2021) Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells 10:821. https://doi.org/10.3390/cells10040821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jakhmola S, Indari O, Kashyap D et al (2021) Mutational analysis of structural proteins of SARS-CoV-2. Heliyon 7:e06572. https://doi.org/10.1016/j.heliyon.2021.e06572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chai J, Cai Y, Pang C et al (2021) Structural basis for SARS-CoV-2 envelope protein recognition of human cell junction protein PALS1. Nat Commun 12:3433. https://doi.org/10.1038/s41467-021-23533-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gupta RK, Mlcochova P (2022) Cyclin D3 restricts SARS-CoV‐2 envelope incorporation into virions and interferes with viral spread. EMBO J 41:e111653. https://doi.org/10.15252/embj.2022111653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yue Y, Nabar NR, Shi C-S et al (2018) SARS-coronavirus open reading frame-3a drives multimodal necrotic cell death. Cell Death Dis 9:904. https://doi.org/10.1038/s41419-018-0917-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Freundt EC, Yu L, Goldsmith CS et al (2010) The open reading frame 3a protein of severe acute respiratory syndrome-associated coronavirus promotes membrane rearrangement and cell death. J Virol 84:1097–1109. https://doi.org/10.1128/JVI.01662-09

    Article  CAS  PubMed  Google Scholar 

  10. Guo Y, Luo R, Wang Y et al (2021) SARS-CoV-2 induced intestinal responses with a biomimetic human gut-on-chip. Sci Bull 66:783–793. https://doi.org/10.1016/j.scib.2020.11.015

    Article  CAS  Google Scholar 

  11. Lamers MM, Beumer J, van der Vaart J et al (2020) SARS-CoV-2 productively infects human gut enterocytes. Science 369:50–54. https://doi.org/10.1126/science.abc1669

    Article  CAS  PubMed  Google Scholar 

  12. De Maio F, Lo Cascio E, Babini G et al (2020) Improved binding of SARS-CoV-2 envelope protein to tight junction-associated PALS1 could play a key role in COVID-19 pathogenesis. Microbes Infect 22:592–597. https://doi.org/10.1016/j.micinf.2020.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Faust H, Mangalmurti NS (2020) Collateral damage: necroptosis in the development of lung injury. Am J Physiol-Lung Cell Mol Physiol 318:L215–L225. https://doi.org/10.1152/ajplung.00065.2019

    Article  CAS  PubMed  Google Scholar 

  14. Wang J, Li X, Wang Y et al (2022) Osteopontin aggravates acute lung injury in influenza virus infection by promoting macrophages necroptosis. Cell Death Discov 8:97. https://doi.org/10.1038/s41420-022-00904-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Assil S, Paludan SR (2017) Live and let die: ZBP1 senses viral and cellular RNAs to trigger necroptosis. EMBO J 36:2470–2472. https://doi.org/10.15252/embj.201797845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li S, Zhang Y, Guan Z et al (2023) SARS-CoV-2 Z-RNA activates the ZBP1-RIPK3 pathway to promote virus-induced inflammatory responses. Cell Res 33:201–214. https://doi.org/10.1038/s41422-022-00775-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li X, Zhang Z, Wang Z et al (2022) Cell deaths: involvement in the pathogenesis and intervention therapy of COVID-19. Sig Transduct Target Ther 7:186. https://doi.org/10.1038/s41392-022-01043-6

    Article  CAS  Google Scholar 

  18. Xia B, Shen X, He Y et al (2021) SARS-CoV-2 envelope protein causes acute respiratory distress syndrome (ARDS)-like pathological damages and constitutes an antiviral target. Cell Res 31:847–860. https://doi.org/10.1038/s41422-021-00519-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zheng M, Karki R, Williams EP et al (2021) TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat Immunol 22:829–838. https://doi.org/10.1038/s41590-021-00937-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han Y, Zhu J, Yang L et al (2022) SARS-CoV-2 infection induces ferroptosis of sinoatrial node pacemaker cells. Circ Res 130:963–977. https://doi.org/10.1161/CIRCRESAHA.121.320518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. VasanthiDharmalingam P, Karuppagounder V, Watanabe K et al (2021) SARS–CoV-2 mediated hyperferritinemia and cardiac arrest: preliminary insights. Drug Discovery Today 26:1265–1274. https://doi.org/10.1016/j.drudis.2021.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hadi JM, Mohammad HM, Ahmed AY et al (2022) Investigation of serum ferritin for the prediction of COVID-19 severity and mortality: a cross-sectional study. Cureus. https://doi.org/10.7759/cureus.31982

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dong G, Yu J, Gao W et al (2022) Hemophagocytosis, hyper-inflammatory responses, and multiple organ damages in COVID-19-associated hyperferritinemia. Ann Hematol 101:513–520. https://doi.org/10.1007/s00277-021-04735-1

    Article  CAS  PubMed  Google Scholar 

  24. Su W, Ju J, Gu M et al (2023) SARS-CoV-2 envelope protein triggers depression-like behaviors and dysosmia via TLR2-mediated neuroinflammation in mice. J Neuroinflammation 20:110. https://doi.org/10.1186/s12974-023-02786-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu H, Akinyemi IA, Chitre SA et al (2022) SARS-CoV-2 viroporin encoded by ORF3a triggers the NLRP3 inflammatory pathway. Virology 568:13–22. https://doi.org/10.1016/j.virol.2022.01.003

    Article  CAS  PubMed  Google Scholar 

  26. Enaud R, Prevel R, Ciarlo E et al (2020) The Gut–Lung Axis in health and respiratory diseases: a place for inter-organ and inter-kingdom crosstalks. Front Cell Infect Microbiol 10:9. https://doi.org/10.3389/fcimb.2020.00009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Price CE, O’Toole GA (2021) The Gut–Lung Axis in cystic fibrosis. J Bacteriol. https://doi.org/10.1128/JB.00311-21

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang W-A, Carreras-Sureda A, Demaurex N (2023) SARS-CoV-2 infection alkalinizes the ERGIC and lysosomes through the viroporin activity of the viral envelope protein. J Cell Sci 136:jcs260685. https://doi.org/10.1242/jcs.260685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schoeman D, Fielding BC (2019) Coronavirus envelope protein: current knowledge. Virol J 16:69. https://doi.org/10.1186/s12985-019-1182-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dang AT, Marsland BJ (2019) Microbes, metabolites, and the Gut–Lung Axis. Mucosal Immunol 12:843–850. https://doi.org/10.1038/s41385-019-0160-6

    Article  CAS  PubMed  Google Scholar 

  31. Stavropoulou E, Kantartzi K, Tsigalou C et al (2021) Unraveling the interconnection patterns across lung microbiome, respiratory diseases, and COVID-19. Front Cell Infect Microbiol 10:619075. https://doi.org/10.3389/fcimb.2020.619075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen T-H, Hsu M-T, Lee M-Y, Chou C-K (2022) Gastrointestinal involvement in SARS-CoV-2 infection. Viruses 14:1188. https://doi.org/10.3390/v14061188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Malik JA, Ahmed S, Yaseen Z et al (2022) Association of SARS-CoV-2 and polypharmacy with Gut–Lung Axis: from pathogenesis to treatment. ACS Omega 7:33651–33665. https://doi.org/10.1021/acsomega.2c02524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen Y, Zheng Y, Yu Y et al (2020) Blood molecular markers associated with COVID-19 immunopathology and multi‐organ damage. EMBO J 39:e105896. https://doi.org/10.15252/embj.2020105896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu G, Li Y, Zhang S et al (2021) SARS-CoV-2 promotes RIPK1 activation to facilitate viral propagation. Cell Res 31:1230–1243. https://doi.org/10.1038/s41422-021-00578-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Baral B, Muduli K, Jakhmola S et al (2023) Redefining lobe-wise ground-glass opacity in COVID-19 through deep learning and its correlation with biochemical parameters. IEEE J Biomed Health Inform. https://doi.org/10.1109/JBHI.2023.3263431

    Article  PubMed  Google Scholar 

  37. Sonkar C, Kashyap D, Varshney N et al (2020) Impact of gastrointestinal symptoms in COVID-19: a Molecular Approach. SN Compr Clin Med 2:2658–2669. https://doi.org/10.1007/s42399-020-00619-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qian Q, Fan L, Liu W et al (2021) Direct evidence of active SARS-CoV-2 replication in the intestine. Clin Infect Dis 73:361–366. https://doi.org/10.1093/cid/ciaa925

    Article  CAS  PubMed  Google Scholar 

  39. Lin L, Jiang X, Zhang Z et al (2020) Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut 69:997–1001. https://doi.org/10.1136/gutjnl-2020-321013

    Article  CAS  PubMed  Google Scholar 

  40. Cheung KS, Hung IFN, Chan PPY et al (2020) Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong Cohort: systematic review and Meta-analysis. Gastroenterology 159:81–95. https://doi.org/10.1053/j.gastro.2020.03.065

    Article  CAS  PubMed  Google Scholar 

  41. Yang Y, Huang W, Fan Y, Chen G-Q (2021) Gastrointestinal microenvironment and the Gut–Lung Axis in the immune responses of severe COVID-19. Front Mol Biosci 8:647508. https://doi.org/10.3389/fmolb.2021.647508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shepley-McTaggart A, Sagum CA, Oliva I et al (2021) SARS-CoV-2 envelope (E) protein interacts with PDZ-domain-2 of host tight junction protein ZO1. PLoS ONE 16:e0251955. https://doi.org/10.1371/journal.pone.0251955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang Y, Xiong Z, Zhang S et al (2005) Bcl-xL inhibits T-cell apoptosis induced by expression of SARS coronavirus E protein in the absence of growth factors. Biochem J 392:135–143. https://doi.org/10.1042/BJ20050698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rybakovsky E, Valenzano MC, DiGuilio KM et al (2019) Improving transient transfection efficiency in a differentiated, polar epithelial cell layer. J Biomol Tech 30:19–24. https://doi.org/10.7171/jbt.19-3002-001

    Article  PubMed  PubMed Central  Google Scholar 

  45. Iwasaki M, Saito J, Zhao H et al (2021) Inflammation triggered by SARS-CoV-2 and ACE2 augment drives multiple organ failure of severe COVID-19: molecular mechanisms and implications. Inflammation 44:13–34. https://doi.org/10.1007/s10753-020-01337-3

    Article  CAS  PubMed  Google Scholar 

  46. Chua RL, Lukassen S, Trump S et al (2020) COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis. Nat Biotechnol 38:970–979. https://doi.org/10.1038/s41587-020-0602-4

    Article  CAS  PubMed  Google Scholar 

  47. Rajalakshmy AR, Malathi J, Madhavan HN (2015) Hepatitis C virus NS3 mediated microglial inflammation via TLR2/TLR6 MyD88/NF-κB pathway and toll like receptor ligand treatment furnished immune tolerance. PLoS ONE 10:e0125419. https://doi.org/10.1371/journal.pone.0125419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rhee SH, Kim H, Moyer MP, Pothoulakis C (2006) Role of MyD88 in phosphatidylinositol 3-kinase activation by flagellin/toll-like receptor 5 engagement in colonic epithelial cells. J Biol Chem 281:18560–18568. https://doi.org/10.1074/jbc.M513861200

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Z, Louboutin J-P, Weiner DJ et al (2005) Human airway epithelial cells sense Pseudomonas aeruginosa infection via Recognition of Flagellin by Toll-Like receptor 5. Infect Immun 73:7151–7160. https://doi.org/10.1128/IAI.73.11.7151-7160.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nieto-Torres JL, Verdiá-Báguena C, Jimenez-Guardeño JM et al (2015) Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology 485:330–339. https://doi.org/10.1016/j.virol.2015.08.010

    Article  CAS  PubMed  Google Scholar 

  51. Zhou S, Lv P, Li M et al (2023) SARS-CoV-2 E protein: pathogenesis and potential therapeutic development. Biomed Pharmacother 159:114242. https://doi.org/10.1016/j.biopha.2023.114242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hu J, Pan D, Li G et al (2022) Regulation of programmed cell death by Brd4. Cell Death Dis 13:1059. https://doi.org/10.1038/s41419-022-05505-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Orzalli MH, Kagan JC (2017) Apoptosis and necroptosis as host defense strategies to prevent viral infection. Trends Cell Biol 27:800–809. https://doi.org/10.1016/j.tcb.2017.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li S, Zhang Y, Guan Z et al (2020) SARS-CoV-2 triggers inflammatory responses and cell death through caspase-8 activation. Sig Transduct Target Ther 5:235. https://doi.org/10.1038/s41392-020-00334-0

    Article  CAS  Google Scholar 

  55. Liccardi G, Annibaldi A (2023) MLKL post-translational modifications: road signs to infection, inflammation and unknown destinations. Cell Death Differ 30:269–278. https://doi.org/10.1038/s41418-022-01061-5

    Article  CAS  PubMed  Google Scholar 

  56. Kang YJ, Bang B-R, Han KH et al (2015) Regulation of NKT cell-mediated immune responses to tumours and liver inflammation by mitochondrial PGAM5-Drp1 signalling. Nat Commun 6:8371. https://doi.org/10.1038/ncomms9371

    Article  CAS  PubMed  Google Scholar 

  57. Chen L, Zhang X, Ou Y et al (2022) Advances in RIPK1 kinase inhibitors. Front Pharmacol 13:976435. https://doi.org/10.3389/fphar.2022.976435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rebsamen M, Heinz LX, Meylan E et al (2009) DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-κB. EMBO Rep 10:916–922. https://doi.org/10.1038/embor.2009.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao H, Jaffer T, Eguchi S et al (2015) Role of necroptosis in the pathogenesis of solid organ injury. Cell Death Dis 6:e1975–e1975. https://doi.org/10.1038/cddis.2015.316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jiao H, Wachsmuth L, Kumari S et al (2020) Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation. Nature 580:391–395. https://doi.org/10.1038/s41586-020-2129-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Samson AL, Zhang Y, Geoghegan ND et al (2020) MLKL trafficking and accumulation at the plasma membrane control the kinetics and threshold for necroptosis. Nat Commun 11:3151. https://doi.org/10.1038/s41467-020-16887-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Baral B, Kashyap D, Varshney N et al (2023) Helicobacter pylori isolated from gastric juice have higher pathogenic potential than biopsy isolates. Genes Dis. https://doi.org/10.1016/j.gendis.2023.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kashyap D, Baral B, Jakhmola S et al (2021) Helicobacter pylori and epstein-barr virus coinfection stimulates aggressiveness in gastric cancer through the regulation of Gankyrin. mSphere 6:e00751–e00721. https://doi.org/10.1128/mSphere.00751-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kashyap D, Varshney N, Baral B et al (2023) Helicobacter pylori infected gastric epithelial cells bypass cell death pathway through the oncoprotein Gankyrin. Adv Cancer Biol-Metastasis 7:100087. https://doi.org/10.1016/j.adcanc.2023.100087

    Article  CAS  Google Scholar 

  65. Wang B, Guo C, Liu Y et al (2020) Novel nano-pomegranates based on astragalus polysaccharides for targeting ERα-positive breast cancer and multidrug resistance. Drug Deliv 27:607–621. https://doi.org/10.1080/10717544.2020.1754529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Girish YR, Kumar BA, Kumar KSS et al (2022) Identification of novel benzimidazole-based small molecule targeting dual targets tankyrase and Bcl2 to induce apoptosis in Colon cancer. J Mol Struct 1269:133813. https://doi.org/10.1016/j.molstruc.2022.133813

    Article  CAS  Google Scholar 

  67. Gottlieb RA (2013) Measuring autophagy in vivo. Autophagy in Health and Disease. Elsevier, Amsterdam, pp 181–189

    Chapter  Google Scholar 

Download references

Acknowledgements

Indian Institute of Technology Indore for providing facilities and support. We appreciate lab colleagues for their insightful discussions and advice. We appreciate the help of Mr. Pratik Kundu for his support in performing some of the experiments. We acknowledge the Indian Council of Medical Research (Grant no. BMI/12(82)/2021 and ECD/CSTPU/Adhoc/COVID-19/28/2021-22) and Central Council for Research in Ayurvedic Sciences (Grant no. 1263/2022-23) Govt. of India for funding. We are also thankful to University Grants Commission, Dept. of Biotechnology Govt. of India for fellowship to Budhadev Baral and Vaishali Saini respectively in the form of research stipend. We also acknowledge DST-FIST support project No. SR/FST/LS-I/2020/621 for providing us with different instruments.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HCJ and BB, methodology: HCJ and BB, formal analysis and investigation: BB, VS, AT, SS, SR, AKD, HSP and AKM, writing—original draft preparation: BB, writing—review and editing: BB, AKD, HSP, AKM and HCJ, writing—preparation of figures: BB and VS, funding acquisition: HCJ, supervision: HCJ.

Corresponding author

Correspondence to Hem Chandra Jha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6951.6 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baral, B., Saini, V., Tandon, A. et al. SARS-CoV-2 envelope protein induces necroptosis and mediates inflammatory response in lung and colon cells through receptor interacting protein kinase 1. Apoptosis 28, 1596–1617 (2023). https://doi.org/10.1007/s10495-023-01883-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01883-9

Keywords

Navigation