Skip to main content
Log in

Vitamin D3 alleviates lung fibrosis of type 2 diabetic rats via SIRT3 mediated suppression of pyroptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Purpose

We aimed to evaluate whether pulmonary fibrosis occurs in type 2 diabetes rat models and whether VD3 can prevent it by inhibiting pyroptosis.

Methods

Sprague-Dawley rats were assigned to normal control (NC), diabetic model control (MC), low-dose VD3 (LVD), medium-dose VD3 (MVD), high-dose VD3 (HVD) and metformin positive control (PC) groups. Type 2 diabetes model was induced by a high-sugar, high-fat diet combined with STZ injection, and subsequently intervened with VD3 or metformin for 10 weeks. Blood glucose, body weight, food intake, water intake, urine volume, morphology, lung hydroxyproline level, immunohistochemistry, TUNEL staining, inflammatory cytokines secretion and related protein expression were analyzed.

Results

Diabetic rats exhibited significant impairments in fasting blood glucose, insulin resistance, body weight, food intake, water intake, and urine volume. While morphological parameters, diabetic rats exhibited severe lung fibrosis. Intriguingly, VD3 intervention reversed, at least in part, the diabetes-induced alterations. The expression of pyroptosis-related proteins was up-regulated in diabetic lungs whereas the changes were reversed by VD3. In the meanwhile, SIRT3 expression was down-regulated in diabetic lungs while VD3 up-regulated it.

Conclusion

Fibrotic changes were observed in diabetic rat lung tissue and our study indicates that VD3 may effectively ameliorate diabetic pulmonary fibrosis via SIRT3-mediated suppression of pyroptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Association AD (2018) 4. Lifestyle Management. Diabetes care 41, S38-S50. https://doi.org/10.2337/dc18-S004

  2. Guariguata L, Whiting DR, Hambleton I et al (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes research and clinical practice. 103:137–149. https://doi.org/10.1016/j.diabres.2013.11.002

  3. Bloomgarden ZT (2005) Diabetic nephropathy. Diabetes Care 28:745–751

    Article  PubMed  Google Scholar 

  4. Cheung N, Mitchell PWong TY (2010) Diabetic retinopathy. Lancet (London, England) 376, 124–136. https://doi.org/10.1016/S0140-6736(09)62124-3

  5. Pitocco D, Fuso L, Conte EG et al (2012) The diabetic lung–a new target organ? The review of diabetic studies: RDS. 9:23–35. https://doi.org/10.1900/RDS.2012.9.23

  6. Kuitert LME (2008) The lung in diabetes–yet another target organ? Chronic respiratory disease 5. 67–68. https://doi.org/10.1177/1479972308091408

  7. Caner B, Ugur O, Bayraktar M et al (1994) Impaired lung epithelial permeability in diabetics detected by technetium-99m-DTPA aerosol scintigraphy. J nuclear medicine: official publication Soc Nuclear Med 35:204–206

    CAS  Google Scholar 

  8. Tuleta IFrangogiannis N G (2021) Diabetic fibrosis. Biochimica et biophysica acta molecular basis of disease 1867. 166044. https://doi.org/10.1016/j.bbadis.2020.166044

  9. Morgan M, JLiu Z G Crosstalk of reactive oxygen species and NF-κB signaling

  10. Lawrence T The nuclear factor NF-kappaB pathway in inflammation

  11. Mack M (2018) Inflammation and fibrosis. Matrix Biology: Journal of the International Society for Matrix Biology 68–69. 106–121. https://doi.org/10.1016/j.matbio.2017.11.010

  12. Chen Y, Zhang F, Wang D et al (2020) Mesenchymal Stem Cells Attenuate Diabetic Lung Fibrosis via Adjusting Sirt3-Mediated Stress Responses in Rats. Oxidative Medicine and Cellular Longevity 2020, 8076105. https://doi.org/10.1155/2020/8076105

  13. Bause A, SHaigis M, C (2013) SIRT3 regulation of mitochondrial oxidative stress. Exp Gerontol 48:634–639. https://doi.org/10.1016/j.exger.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  14. Dikalova AE, Pandey A, Xiao L et al (2020) Mitochondrial deacetylase Sirt3 reduces vascular dysfunction and hypertension while Sirt3 depletion in essential hypertension is linked to vascular inflammation and oxidative stress. Circul Res 126:439–452. https://doi.org/10.1161/CIRCRESAHA.119.315767

    Article  CAS  Google Scholar 

  15. Chen C, Gu J, Wang J et al (2021) Physcion 8-O-β-glucopyranoside ameliorates liver fibrosis through inflammation inhibition by regulating SIRT3-mediated NF-κB P65 nuclear expression. Int Immunopharmacol 90:107206. https://doi.org/10.1016/j.intimp.2020.107206

    Article  CAS  PubMed  Google Scholar 

  16. Lv D, Luo M, Yan J et al (2021) Protective effect of Sirtuin 3 on CLP-Induced endothelial dysfunction of early Sepsis by inhibiting NF-κB and NLRP3 signaling pathways. Inflammation 44:1782–1792. https://doi.org/10.1007/s10753-021-01454-7

    Article  CAS  PubMed  Google Scholar 

  17. Wu J, Jin ZYan LJ (2017) Redox imbalance and mitochondrial abnormalities in the diabetic lung. Redox Biol 11:51–59. https://doi.org/10.1016/j.redox.2016.11.003

    Article  CAS  PubMed  Google Scholar 

  18. Giulietti A, van Etten E, Overbergh L et al (2007) Monocytes from type 2 diabetic patients have a pro-inflammatory profile. 1,25-Dihydroxyvitamin D(3) works as anti-inflammatory. Diabetes Res Clin Pract 77:47–57

    Article  CAS  PubMed  Google Scholar 

  19. Wang H, Zhang Q, Chai Y et al (2015) 1,25(OH)2D3 downregulates the toll-like receptor 4-mediated inflammatory pathway and ameliorates liver injury in diabetic rats. J Endocrinol Investig 38:1083–1091. https://doi.org/10.1007/s40618-015-0287-6

    Article  CAS  Google Scholar 

  20. Ahmad S, Arora S, Khan S et al (2021) Vitamin D and its therapeutic relevance in pulmonary diseases. J Nutr Biochem 90:108571. https://doi.org/10.1016/j.jnutbio.2020.108571

    Article  CAS  PubMed  Google Scholar 

  21. Lecube A, Simó R, Pallayova M et al (2017) Pulmonary function and sleep breathing: two new targets for type 2 Diabetes Care. Endocr Rev 38:550–573. https://doi.org/10.1210/er.2017-00173

    Article  PubMed  Google Scholar 

  22. van den Borst B, Gosker HR, Zeegers MP et al (2010) Pulmonary function in diabetes: a metaanalysis. Chest 138:393–406. https://doi.org/10.1378/chest.09-2622

    Article  PubMed  Google Scholar 

  23. Ehrlich SF, Quesenberry CP, Van Den Eeden SK et al (2010) Patients diagnosed with diabetes are at increased risk for asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and pneumonia but not lung cancer. Diabetes Care 33:55–60. https://doi.org/10.2337/dc09-0880

    Article  PubMed  Google Scholar 

  24. Tecilazich F, Formenti A, MGiustina A (2021) Role of vitamin D in diabetic retinopathy: pathophysiological and clinical aspects. Reviews In Endocrine & Metabolic Disorders 22:715–727. https://doi.org/10.1007/s11154-020-09575-4

    Article  CAS  Google Scholar 

  25. Karonova T, Stepanova A, Bystrova A et al (2020) High-dose vitamin D supplementation improves Microcirculation and reduces inflammation in Diabetic Neuropathy Patients. Nutrients 12 https://doi.org/10.3390/nu12092518

  26. Qu H, Lin K, Wang H et al (2017) 1,25(OH) D improves cardiac dysfunction, hypertrophy, and fibrosis through PARP1/SIRT1/mTOR-related mechanisms in type 1 diabetes. 61. Molecular nutrition & food researchhttps://doi.org/10.1002/mnfr.201600338

  27. Båvenholm PN, Pigon J, Ostenson CG et al (2001) Insulin sensitivity of suppression of endogenous glucose production is the single most important determinant of glucose tolerance. Diabetes 50:1449–1454

    Article  PubMed  Google Scholar 

  28. Bai Y, Zang X, Ma J et al (2016) Anti-diabetic effect of Portulaca oleracea L. Polysaccharideandits mechanism in Diabetic rats. Int J Mol Sci 17. https://doi.org/10.3390/ijms17081201

  29. Zhang D, Meng HYang H-s (2012) Antidiabetic activity of Taxus cuspidata polysaccharides in streptozotocin-induced diabetic mice. Int J Biol Macromol 50:720–724. https://doi.org/10.1016/j.ijbiomac.2011.12.020

    Article  CAS  PubMed  Google Scholar 

  30. Xiong W-T, Gu L, Wang C et al (2013) Anti-hyperglycemic and hypolipidemic effects of Cistanche tubulosa in type 2 diabetic db/db mice. J Ethnopharmacol 150:935–945. https://doi.org/10.1016/j.jep.2013.09.027

    Article  PubMed  Google Scholar 

  31. Pan L, Li Z, Wang Y et al (2020) Network pharmacology and metabolomics study on the intervention of traditional chinese medicine Huanglian Decoction in rats with type 2 diabetes mellitus. J Ethnopharmacol 258:112842. https://doi.org/10.1016/j.jep.2020.112842

    Article  CAS  PubMed  Google Scholar 

  32. Pitocco D, Zaccardi F, Di Stasio E et al (2010) Oxidative stress, nitric oxide, and diabetes. The review of diabetic studies: RDS. 7:15–25. https://doi.org/10.1900/RDS.2010.7.15

  33. Niroomand M, Fotouhi A, Irannejad N et al (2019) Does high-dose vitamin D supplementation impact insulin resistance and risk of development of diabetes in patients with pre-diabetes? A double-blind randomized clinical trial. Diabetes Res Clin Pract 148:1–9. https://doi.org/10.1016/j.diabres.2018.12.008

    Article  CAS  PubMed  Google Scholar 

  34. Davidson MB, Duran P, Lee ML et al (2013) High-dose vitamin D supplementation in people with prediabetes and hypovitaminosis D. Diabetes care. 36:260–266. https://doi.org/10.2337/dc12-1204

  35. Ban C, RTwigg S M (2008) Fibrosis in diabetes complications: pathogenic mechanisms and circulating and urinary markers. Vasc Health Risk Manag 4:575–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee S, BKalluri R (2010) Mechanistic connection between inflammation and fibrosis. Kidney International Supplement. https://doi.org/10.1038/ki.2010.418. S22-S26

  37. Wynn T, ARamalingam T, R (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18:1028–1040. https://doi.org/10.1038/nm.2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lamouille S, Xu JDerynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196. https://doi.org/10.1038/nrm3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu M-A, Shin K-S, Kim JH et al (2009) HGF and BMP-7 ameliorate high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelium. J Am Soc Nephrology: JASN 20:567–581. https://doi.org/10.1681/ASN.2008040424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nieto MA, Huang RY-J, Jackson RA et al (2016) EMT: 2016. Cell 166:21–45. https://doi.org/10.1016/j.cell.2016.06.028

    Article  CAS  PubMed  Google Scholar 

  41. Hill C, Jones MG, Davies DE et al (2019) Epithelial-mesenchymal transition contributes to pulmonary fibrosis via aberrant epithelial/fibroblastic cross-talk. J Lung Health Dis 3:31–35

    Article  PubMed  PubMed Central  Google Scholar 

  42. Salton F, Volpe M, CConfalonieri M (2019) Epithelial Mesenchymal transition in the Pathogenesis of Idiopathic Pulmonary Fibrosis. Medicina (Kaunas. Lithuania) 55. https://doi.org/10.3390/medicina55040083

  43. Nathan SD, Brown A, WKing C S (2016) Pathogenesis of idiopathic pulmonary fibrosis. Guide to Clinical Management of Idiopathic Pulmonary Fibrosis. Springer International Publishing, Cham, pp 43–51

    Chapter  Google Scholar 

  44. Wilson M, SWynn TA (2009) Pulmonary fibrosis: pathogenesis, etiology and regulation. Mucosal Immunol 2:103–121. https://doi.org/10.1038/mi.2008.85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shi J, Gao WShao F (2017) Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends. Biochem Sci 42:245–254. https://doi.org/10.1016/j.tibs.2016.10.004

    Article  CAS  Google Scholar 

  46. Frank DVince JE (2019) Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death and Differentiation 26. https://doi.org/10.1038/s41418-018-0212-6

    Article  Google Scholar 

  47. Song M, Wang J, Sun Y et al (2022) Inhibition of gasdermin D-dependent pyroptosis attenuates the progression of silica-induced pulmonary inflammation and fibrosis. Acta Pharm Sinica B 12:1213–1224. https://doi.org/10.1016/j.apsb.2021.10.006

    Article  CAS  Google Scholar 

  48. Zhao Q, Hao C, Wei J et al (2021) Bone marrow-derived mesenchymal stem cells attenuate silica-induced pulmonary fibrosis by inhibiting apoptosis and pyroptosis but not autophagy in rats. Ecotoxicol Environ Saf 216:112181. https://doi.org/10.1016/j.ecoenv.2021.112181

    Article  CAS  PubMed  Google Scholar 

  49. Liang Q, Cai W, Zhao Y et al (2020) Lycorine ameliorates bleomycin-induced pulmonary fibrosis via inhibiting NLRP3 inflammasome activation and pyroptosis. Pharmacol Res 158:104884. https://doi.org/10.1016/j.phrs.2020.104884

    Article  CAS  PubMed  Google Scholar 

  50. Gao J, Peng S, Shan X et al (2019) Inhibition of AIM2 inflammasome-mediated pyroptosis by Andrographolide contributes to amelioration of radiation-induced lung inflammation and fibrosis. Cell Death Dis 10:957. https://doi.org/10.1038/s41419-019-2195-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Perico L, Morigi MBenigni A (2016) Mitochondrial sirtuin 3 and renal Diseases. Nephron 134:14–19. https://doi.org/10.1159/000444370

    Article  CAS  PubMed  Google Scholar 

  52. Sosulski ML, Gongora R, Feghali-Bostwick C et al (2017) Sirtuin 3 Deregulation promotes pulmonary fibrosis. The journals of Gerontology Series A, Biological Sciences and Medical Sciences. 72:595–602. https://doi.org/10.1093/gerona/glw151

  53. Chen C-J, Fu Y-C, Yu W et al (2013) SIRT3 protects cardiomyocytes from oxidative stress-mediated cell death by activating NF-κB. Biochemical and biophysical research communications. 430:798–803. https://doi.org/10.1016/j.bbrc.2012.11.066

  54. Tyagi A, Nguyen CU, Chong T et al (2018) SIRT3 deficiency-induced mitochondrial dysfunction and inflammasome formation in the brain. Sci Rep 8:17547. https://doi.org/10.1038/s41598-018-35890-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kurundkar D, Kurundkar AR, Bone NB et al (2019) SIRT3 diminishes inflammation and mitigates endotoxin-induced acute lung injury. JCI Insight 4. https://doi.org/10.1172/jci.insight.120722

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China, grant number (82173515, 82003454, 81872626).

Author information

Authors and Affiliations

Authors

Contributions

Substantial contributions to the conception or design of the work: Lu-Lu Tang, Xing Li. Substantial contributions to the acquisition, analysis or interpretation of data for the work: Lu-Lu Tang, Xing Li and Dong-Dong Zhang. Drafting the work or revising it critically for important intellectual content: Lu-Lu Tang, Xing Li, Dong-Dong Zhang, Yu-Jing Zhang, Yang-Yang Peng, Meng-Xin Li, Han-Lu Song, Hao Chen and Wen-Jie Li. Final approval of the version to be published: Lu-Lu Tang, Xing Li, Dong-Dong Zhang, Yu-Jing Zhang, Yang-Yang Peng, Meng-Xin Li, Han-Lu Song, Hao Chen and Wen-Jie Li.

Corresponding author

Correspondence to Xing Li.

Ethics declarations

Competing interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

All experiments involving animal subjects were performed in accordance with guidelines approved by the Animal Care and Use Committee of Zhengzhou University (ZZUGZR2018-035).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Zhang, D., Zhang, Y. et al. Vitamin D3 alleviates lung fibrosis of type 2 diabetic rats via SIRT3 mediated suppression of pyroptosis. Apoptosis 28, 1618–1627 (2023). https://doi.org/10.1007/s10495-023-01878-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01878-6

Keywords

Navigation