Skip to main content

Advertisement

Log in

The regulation of amino acid metabolism in tumor cell death: from the perspective of physiological functions

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Amino acids (AAs) are crucial molecules for the synthesis of mammalian proteins as well as a source of energy and redox equilibrium maintenance. The development of tumors also requires AAs as nutrients. Increased AAs metabolism is frequently seen in tumor cells to produce enough biomass, energy, and reduction agents. However, increased AA demand may result in auxotrophy in some cancer cells, highlighting the vulnerabilities of cancers and exposing the AA metabolism as a potential target for cancer therapy. The dynamic balance of cell survival and death is required for cellular homeostasis, growth, and development. Malignant cells manage to avoid cell death through a range of mechanisms, such as developing an addiction to amino acids through metabolic adaptation. In order to offer some guidance for AA-targeted cancer therapy, we have outlined the function of AA metabolism in tumor progression, the modalities of cell death, and the regulation of AA metabolism on tumor cell death in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Agirre X et al (2003) TP53 is frequently altered by methylation, mutation, and/or deletion in acute lymphoblastic leukaemia. Mol Carcinog 38(4):201–208

    Article  CAS  PubMed  Google Scholar 

  2. Akram M (2014) Citric acid cycle and role of its intermediates in metabolism. Cell Biochem Biophys 68(3):475–478

    Article  CAS  PubMed  Google Scholar 

  3. Amelio I et al (2014) Serine and glycine metabolism in cancer. Trends Biochem Sci 39(4):191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ananieva EA, Wilkinson AC (2018) Branched-chain amino acid metabolism in cancer. Curr Opin Clin Nutr Metab Care 21(1):64–70

    Article  CAS  PubMed  Google Scholar 

  5. Audia JE, Campbell RM (2016) Histone modifications and cancer. Cold Spring Harb Perspect Biol 8(4):a019521

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bean GR et al (2016) A metabolic synthetic lethal strategy with arginine deprivation and chloroquine leads to cell death in ASS1-deficient sarcomas. Cell Death Dis 7(10):e2406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berger SL et al (2009) An operational definition of epigenetics. Genes Dev 23(7):781–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bersuker K et al (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575(7784):688–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bodineau C et al (2022) Glutamine, MTOR and autophagy: a multiconnection relationship. Autophagy 18(11):2749–2750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Broer S, Gauthier-Coles G (2022) Amino acid homeostasis in mammalian cells with a focus on amino acid transport. J Nutr 152(1):16–28

    Article  PubMed  Google Scholar 

  11. Brosnan JT, Brosnan ME (2013) Glutamate: a truly functional amino acid. Amino Acids 45(3):413–418

    Article  CAS  PubMed  Google Scholar 

  12. Chen MS et al (2017) CHAC1 degradation of glutathione enhances cystine-starvation-induced necroptosis and ferroptosis in human triple negative breast cancer cells via the GCN2-eIF2alpha-ATF4 pathway. Oncotarget 8(70):114588–114602

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chmelarova M et al (2013) Methylation in the p53 promoter in epithelial ovarian cancer. Clin Transl Oncol 15(2):160–163

    Article  CAS  PubMed  Google Scholar 

  14. Chung WJ et al (2005) Inhibition of cystine uptake disrupts the growth of primary brain tumors. J Neurosci 25(31):7101–7110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cluntun AA et al (2017) Glutamine metabolism in cancer: understanding the heterogeneity. Trends Cancer 3(3):169–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cools J (2012) Improvements in the survival of children and adolescents with acute lymphoblastic leukemia. Haematologica 97(5):635

    Article  PubMed  PubMed Central  Google Scholar 

  17. Currie E et al (2013) Cellular fatty acid metabolism and cancer. Cell Metab 18(2):153–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Da LDR et al (2018) Leucine reduces the proliferation of MC3T3-E1 cells through DNA damage and cell senescence. Toxicol In Vitro 48:1–10

    Article  Google Scholar 

  19. Dai X et al (2021) Programmed cell death, redox imbalance, and cancer therapeutics. Apoptosis 26(7–8):385–414

    Article  PubMed  Google Scholar 

  20. Dawson MA (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27

    Article  CAS  PubMed  Google Scholar 

  21. Diaz-Vivancos P et al (2015) Glutathione–linking cell proliferation to oxidative stress. Free Radic Biol Med 89:1154–1164

    Article  CAS  PubMed  Google Scholar 

  22. Dixon SJ et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149(5):1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Edwards JR et al (2017) DNA methylation and DNA methyltransferases. Epigenet Chromatin 10:23

    Article  Google Scholar 

  24. Ekici S et al (2022) Glutamine imaging: a new avenue for glioma management. AJNR Am J Neuroradiol 43(1):11–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ellis L et al (2009) Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther 8(6):1409–1420

    Article  CAS  PubMed  Google Scholar 

  26. Endicott M et al (2021) Amino acid metabolism as a therapeutic target in cancer: a review. Amino Acids 53(8):1169–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Falcone M et al (2022) Sensitisation of cancer cells to radiotherapy by serine and glycine starvation. Br J Cancer 127(10):1773–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fan J et al (2014) Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510(7504):298–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fan K et al (2022) Targeting nutrient dependency in cancer treatment. Front Oncol 12:820173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Frank D, Vince JE (2019) Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ 26(1):99–114

    Article  PubMed  Google Scholar 

  31. Fuchs BC, Bode BP (2006) Stressing out over survival: glutamine as an apoptotic modulator. J Surg Res 131(1):26–40

    Article  CAS  PubMed  Google Scholar 

  32. Galluzzi L, Kroemer G (2008) Necroptosis: a specialized pathway of programmed necrosis. Cell 135(7):1161–1163

    Article  CAS  PubMed  Google Scholar 

  33. Galluzzi L et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25(3):486–541

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gao M et al (2022) Understanding the mechanistic regulation of ferroptosis in cancer: the gene matters. J Genet Genomics 49(10):913–926

    Article  PubMed  Google Scholar 

  35. Glick D et al (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221(1):3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gopisetty G et al (2006) DNA methylation and apoptosis. Mol Immunol 43(11):1729–1740

    Article  CAS  PubMed  Google Scholar 

  37. Green CR et al (2016) Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis. Nat Chem Biol 12(1):15–21

    Article  CAS  PubMed  Google Scholar 

  38. Hanaki S, Shimada M (2021) Targeting EZH2 as cancer therapy. J Biochem 170(1):1–4

    Article  CAS  PubMed  Google Scholar 

  39. Hoffer LJ (2016) Human protein and amino acid requirements. JPEN J Parenter Enteral Nutr 40(4):460–474

    Article  CAS  PubMed  Google Scholar 

  40. Jahani M et al (2018) Arginine: challenges and opportunities of this two-faced molecule in cancer therapy. Biomed Pharmacother 102:594–601

    Article  CAS  PubMed  Google Scholar 

  41. Jaramillo MC, Zhang DD (2013) The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev 27(20):2179–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ji Y et al (2017) Deprivation of asparagine triggers cytoprotective autophagy in laryngeal squamous cell carcinoma. Appl Microbiol Biotechnol 101(12):4951–4961

    Article  CAS  PubMed  Google Scholar 

  43. Jiang J et al (2021) Asparagine: a metabolite to be targeted in cancers. Metabolites 11(6):402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jiang YJ et al (2021) Excessive ROS production and enhanced autophagy contribute to myocardial injury induced by branched-chain amino acids: roles for the AMPK-ULK1 signaling pathway and alpha7nAChR. Biochim Biophys Acta Mol Basis Dis 1867(1):165980

    Article  CAS  PubMed  Google Scholar 

  45. Ju HQ et al (2020) NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications. Signal Transduct Target Ther 5(1):231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kaiser WJ, Sridharan H et al (2013) Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem 288(43):31268–31279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kamei Y et al (2020) Regulation of skeletal muscle function by amino acids. Nutrients 12(1):261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Khalil N, Abi-Habib RJ (2020) [HuArgI (co)-PEG5000]-induced arginine deprivation leads to autophagy dependent cell death in pancreatic cancer cells. Invest New Drugs 38(5):1236–1246

    Article  CAS  PubMed  Google Scholar 

  49. Klaunig JE (2018) Oxidative stress and cancer. Curr Pharm Des 24(40):4771–4778

    Article  CAS  PubMed  Google Scholar 

  50. Kovacs SB, Miao EA (2017) Gasdermins: effectors of pyroptosis. Trends Cell Biol 27(9):673–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Le X et al (2020) DNA methylation downregulated ZDHHC1 suppresses tumor growth by altering cellular metabolism and inducing oxidative/ER stress-mediated apoptosis and pyroptosis. Theranostics 10(21):9495–9511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee MG et al (2006) Promoter CpG hypermethylation and downregulation of XAF1 expression in human urogenital malignancies: implication for attenuated p53 response to apoptotic stresses. Oncogene 25(42):5807–5822

    Article  CAS  PubMed  Google Scholar 

  53. Lewis CA et al (2014) Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol Cell 55(2):253–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li Z, Zhang H (2016) Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci 73(2):377–392

    Article  CAS  PubMed  Google Scholar 

  55. Lieu EL et al (2020) Amino acids in cancer. Exp Mol Med 52(1):15–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lin CC et al (2020) RIPK3 upregulation confers robust proliferation and collateral cystine-dependence on breast cancer recurrence. Cell Death Differ 27(7):2234–2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ling H et al (2022) Glycine increased ferroptosis via SAM-mediated GPX4 promoter methylation in rheumatoid arthritis. Rheumatology (Oxford) 61(11):4521–4534

    Article  CAS  PubMed  Google Scholar 

  58. Liu Y, Levine B (2015) Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 22(3):367–376

    Article  CAS  PubMed  Google Scholar 

  59. Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830(5):3143–3153

    Article  CAS  PubMed  Google Scholar 

  60. Maddocks O et al (2017) Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature 544(7650):372–376

    Article  CAS  PubMed  Google Scholar 

  61. Majumdar R et al (2016) Glutamate, ornithine, arginine, proline, and polyamine metabolic interactions: the pathway is regulated at the post-transcriptional level. Front Plant Sci 7:78

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mates JM et al (2006) Pathways from glutamine to apoptosis. Front Biosci 11:3164–3180

    Article  CAS  PubMed  Google Scholar 

  63. Mayers JR, Wu C et al (2014) Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat Med 20(10):1193–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Metallo CM et al (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481(7381):380–384

    Article  PubMed  PubMed Central  Google Scholar 

  65. Michalak EM et al (2019) The roles of DNA, RNA and histone methylation in ageing and cancer. Nat Rev Mol Cell Biol 20(10):573–589

    Article  CAS  PubMed  Google Scholar 

  66. Mitsuishi Y et al (2012) Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22(1):66–79

    Article  CAS  PubMed  Google Scholar 

  67. Moffatt BA, Ashihara H (2002) Purine and pyrimidine nucleotide synthesis and metabolism. Arabidopsis Book 1:e0018

    Article  PubMed  PubMed Central  Google Scholar 

  68. Moreno-Sanchez R et al (2017) Control of the NADPH supply for oxidative stress handling in cancer cells. Free Radic Biol Med 112:149–161

    Article  CAS  PubMed  Google Scholar 

  69. Neinast M et al (2019) Branched chain amino acids. Annu Rev Physiol 81:139–164

    Article  CAS  PubMed  Google Scholar 

  70. Newman AC, Maddocks O (2017) One-carbon metabolism in cancer. Br J Cancer 116(12):1499–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nikiforov MA et al (2002) A functional screen for Myc-responsive genes reveals serine hydroxymethyltransferase, a major source of the one-carbon unit for cell metabolism. Mol Cell Biol 22(16):5793–5800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ohtawa K et al (1998) Apoptosis of leukemia cells induced by valine-deficient medium. Leukemia 12(10):1651–1652

    Article  CAS  PubMed  Google Scholar 

  73. Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20(3):460–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pavlova NN et al (2018) As extracellular glutamine levels decline, asparagine becomes an essential amino acid. Cell Metab 27(2):428-438.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Peng F et al (2022) Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 7(1):286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pentimalli F et al (2019) Cell death pathologies: targeting death pathways and the immune system for cancer therapy. Genes Immun 20(7):539–554

    Article  CAS  PubMed  Google Scholar 

  77. Poillet-Perez L et al (2018) Autophagy maintains tumour growth through circulating arginine. Nature 563(7732):569–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Purohit V et al (2019) Metabolic regulation of redox balance in cancer. Cancers (Basel) 11(7):955

    Article  CAS  PubMed  Google Scholar 

  79. Qi Y et al (2017) Fluorine-18 labeled amino acids for tumor PET/CT imaging. Oncotarget 8(36):60581–60588

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sedillo JC, Cryns VL (2022) Targeting the methionine addiction of cancer. Am J Cancer Res 12(5):2249–2276

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sheen JH et al (2011) Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo. Cancer Cell 19(5):613–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shi J et al (2017) Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends Biochem Sci 42(4):245–254

    Article  CAS  PubMed  Google Scholar 

  83. Shimizu S et al (2014) Autophagic cell death and cancer. Int J Mol Sci 15(2):3145–3153

    Article  PubMed  PubMed Central  Google Scholar 

  84. Shuvalov O et al (2017) One-carbon metabolism and nucleotide biosynthesis as attractive targets for anticancer therapy. Oncotarget 8(14):23955–23977

    Article  PubMed  PubMed Central  Google Scholar 

  85. Shuvayeva GY et al (2021) Indospicine combined with arginine deprivation triggers cancer cell death via caspase-dependent apoptosis. Cell Biol Int 45(3):518–527

    Article  CAS  PubMed  Google Scholar 

  86. Shyh-Chang N et al (2013) Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339(6116):222–226

    Article  PubMed  Google Scholar 

  87. Son SM et al (2019) Leucine signals to mTORC1 via its metabolite acetyl-coenzyme A. Cell Metab 29(1):192-201.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Song P et al (2015) Asparaginase induces apoptosis and cytoprotective autophagy in chronic myeloid leukemia cells. Oncotarget 6(6):3861–3873

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sun RC, Denko NC (2014) Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab 19(2):285–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Suzuki A, Iwata J (2021) Amino acid metabolism and autophagy in skeletal development and homeostasis. Bone 146:115881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tajan M et al (2021) Serine synthesis pathway inhibition cooperates with dietary serine and glycine limitation for cancer therapy. Nat Commun 12(1):366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vandenabeele P et al (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11(10):700–714

    Article  CAS  PubMed  Google Scholar 

  93. Vettore L et al (2020) New aspects of amino acid metabolism in cancer. Br J Cancer 122(2):150–156

    Article  CAS  PubMed  Google Scholar 

  94. Villa E, Ricci JE (2016) How does metabolism affect cell death in cancer? FEBS J 283(14):2653–2660

    Article  CAS  PubMed  Google Scholar 

  95. Vynnytska BO et al (2011) Canavanine augments proapoptotic effects of arginine deprivation in cultured human cancer cells. Anticancer Drugs 22(2):148–157

    Article  CAS  PubMed  Google Scholar 

  96. Wanders D et al (2020) Methionine restriction and cancer biology. Nutrients 12(3):684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang Y et al (2021) The double-edged roles of ROS in cancer prevention and therapy. Theranostics 11(10):4839–4857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wheatley DN (2004) Controlling cancer by restricting arginine availability-arginine- catabolizing enzymes as anticancer agents. Anticancer Drugs 15(9):825–833

    Article  CAS  PubMed  Google Scholar 

  99. White PJ et al (2021) Insulin action, type 2 diabetes, and branched-chain amino acids: a two-way street. Mol Metab 52:101261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wilder CS, Chen Z et al (2022) Pharmacologic approaches to amino acid depletion for cancer therapy. Mol Carcinog 61(2):127–152

    Article  CAS  PubMed  Google Scholar 

  101. Wong CC et al (2016) SLC25A22 promotes proliferation and survival of colorectal cancer cells With KRAS mutations and xenograft tumor progression in mice via intracellular synthesis of aspartate. Gastroenterology 151(5):945-960.e6

    Article  CAS  PubMed  Google Scholar 

  102. Xiao F et al (2016) Leucine deprivation inhibits proliferation and induces apoptosis of human breast cancer cells via fatty acid synthase. Oncotarget 7(39):63679–63689

    Article  PubMed  PubMed Central  Google Scholar 

  103. Yang L et al (2017) Glutaminolysis: a hallmark of cancer metabolism. Annu Rev Biomed Eng 19:163–194

    Article  CAS  PubMed  Google Scholar 

  104. Yang WS et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156(1–2):317–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ying H et al (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149(3):656–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yoo HC, Han JM (2022) Amino acid metabolism in cancer drug resistance. Cells 11(1):140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang J et al (2014) Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol Cell 56(2):205–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang X et al (2020) Homocysteine induces oxidative stress and ferroptosis of nucleus pulposus via enhancing methylation of GPX4. Free Radic Biol Med 160:552–565

    Article  CAS  PubMed  Google Scholar 

  109. Zhang Y et al (2008) Structural biology of the purine biosynthetic pathway. Cell Mol Life Sci 65(23):3699–3724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The Key Research and Development Program of Shaanxi, China (No. 2020SF-061 to LZ).

Author information

Authors and Affiliations

Authors

Contributions

JW conceived and wrote this manuscript. HW and MG drawn the figures in this manuscript. YZ revised the manuscript according to the reviewer’s comments. LZ provided funding support, KT and DH provided revised suggestions for this manuscript. QX, and KT supervised the manuscript. All authors listed in this manuscript have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Corresponding authors

Correspondence to Kangsheng Tu or Qiuran Xu.

Ethics declarations

Conflict of interest

The authors have stated explicitly that there are no conflicts of interest in connection with this article.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, H., Gao, M. et al. The regulation of amino acid metabolism in tumor cell death: from the perspective of physiological functions. Apoptosis 28, 1304–1314 (2023). https://doi.org/10.1007/s10495-023-01875-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01875-9

Keywords

Navigation