Skip to main content

Advertisement

Log in

CHI3L1 promotes myocardial fibrosis via regulating lncRNA TUG1/miR-495-3p/ETS1 axis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Abnormal levels of CHI3L1 and lnc TUG1 are often associated with myocardial fibrosis, and their specific expressions may be closely related to the process of myocardial fibrosis. In addition, CHI3L1 was found to significantly up-regulate the expression of lncTUG1. Therefore, this study further explored the major role of CHI3L1 in regulating the progression of myocardial fibrosis. Myocardial fibrosis in mice was established using an angiotensin (Ang II) model, and the degree of myocardial fibrosis was assessed by qPCR, western blot and pathological techniques. HL-1 cells with overexpression and silencing of CHI3L1 were constructed, and the cell migration ability was detected using the Transwell method. Biological information was used to predict the potential target miRNA of lnc TUG1, and the interaction between them was verified by dual luciferase reporter assay. Using functional rescue assay and the rAAV9 technique, CHI3L1 was verified to affect the fibrotic process of myocardial cells by regulating the lnc TUG1/miR-495-3p/ETS1 axis in vitro and in vivo. The myocardial fibrosis index in the model group was significantly upregulated, and expression of both CHI3L1 and lnc TUG1 was upregulated. Pathological results revealed fibrosis and collagen deposition in the myocardium. Overexpression of lnc TUG1 reversed the inhibitory effect of CHI3L1 silencing on myocardial fibrosis. Mechanistically, CH3L1 upregulates the expression of lnc TUG1, and lnc TUG1 weakens the inhibition of ETS1 through sponge absorption of miR-495-3p, promoting the process of myocardial fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kim S, Iwao H (2000) Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 52:11–34

    CAS  PubMed  Google Scholar 

  2. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210. https://doi.org/10.1002/path.2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meagher PB, Lee XA, Lee J, Visram A, Friedberg MK, Connelly KA (2021) Cardiac Fibrosis: key role of integrins in Cardiac Homeostasis and Remodeling. https://doi.org/10.3390/cells10040770

  4. Johansen JS, Williamson MK, Rice JS, Price PA (1992) Identification of proteins secreted by human osteoblastic cells in culture. J Bone Miner Res 7:501–512. https://doi.org/10.1002/jbmr.5650070506

    Article  CAS  PubMed  Google Scholar 

  5. Yeo IJ, Lee CK, Han SB, Yun J, Hong JT (2019) Roles of chitinase 3-like 1 in the development of cancer, neurodegenerative diseases, and inflammatory diseases. Pharmacol Ther 203:107394. https://doi.org/10.1016/j.pharmthera.2019.107394

    Article  CAS  PubMed  Google Scholar 

  6. Wang Q, Shen H, Min J et al (2018) YKL-40 is highly expressed in the epicardial adipose tissue of patients with atrial fibrillation and associated with atrial fibrosis. J Transl Med 16:229. https://doi.org/10.1186/s12967-018-1598-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kornblit B, Hellemann D, Munthe-Fog L et al (2013) Plasma YKL-40 and CHI3L1 in systemic inflammation and sepsis-experience from two prospective cohorts. Immunobiology 218:1227–1234. https://doi.org/10.1016/j.imbio.2013.04.010

    Article  CAS  PubMed  Google Scholar 

  8. Johansen JS (2006) Studies on serum YKL-40 as a biomarker in diseases with inflammation, tissue remodelling, fibroses and cancer. Dan Med Bull 53:172–209

    CAS  PubMed  Google Scholar 

  9. Sebastiani G, Alberti A (2006) Non invasive fibrosis biomarkers reduce but not substitute the need for liver biopsy. World J Gastroenterol 12:3682–3694. https://doi.org/10.3748/wjg.v12.i23.3682

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pizano-Martínez O, Yañez-Sánchez I, Alatorre-Carranza P et al (2011) YKL-40 expression in CD14+ liver cells in acute and chronic injury. World J Gastroenterol 17:3830–3835. https://doi.org/10.3748/wjg.v17.i33.3830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Archer K, Broskova Z, Bayoumi AS et al (2015) Long non-coding RNAs as Master regulators in Cardiovascular Diseases. Int J Mol Sci 16:23651–23667. https://doi.org/10.3390/ijms161023651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schonrock N, Harvey RP, Mattick JS (2012) Long noncoding RNAs in cardiac development and pathophysiology. Circ Res 111:1349–1362. https://doi.org/10.1161/circresaha.112.268953

    Article  CAS  PubMed  Google Scholar 

  13. Zhu Y, Feng Z, Jian Z, Xiao Y (2018) Long noncoding RNA TUG1 promotes cardiac fibroblast transformation to myofibroblasts via miR–29c in chronic hypoxia. Mol Med Rep 18:3451–3460. https://doi.org/10.3892/mmr.2018.9327

    Article  CAS  PubMed  Google Scholar 

  14. Abd El-Fattah AA, Sadik NAH, Shaker OG, Mohamed A, Kamal (2018) Single nucleotide polymorphism in SMAD7 and CHI3L1 and colorectal Cancer risk. https://doi.org/10.1155/2018/9853192. Mediators Inflamm 2018:9853192.

  15. Yuan X, Pan J, Wen L et al (2019) MiR-144-3p enhances Cardiac Fibrosis after myocardial infarction by Targeting PTEN. Front Cell Dev Biol 7:249. https://doi.org/10.3389/fcell.2019.00249

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sopel MJ, Rosin NL, Lee TD, Légaré JF (2011) Myocardial fibrosis in response to angiotensin II is preceded by the recruitment of mesenchymal progenitor cells. Lab Invest 91:565–578. https://doi.org/10.1038/labinvest.2010.190

    Article  CAS  PubMed  Google Scholar 

  17. Gao J, Guo Y, Chen Y, Zhou J, Liu Y, Su P (2019) Adeno-associated virus 9-mediated RNA interference targeting SOCS3 alleviates diastolic heart failure in rats. Gene 697:11–18. https://doi.org/10.1016/j.gene.2019.01.044

    Article  CAS  PubMed  Google Scholar 

  18. Yang L, Dong H, Lu H et al (2019) Serum YKL-40 predicts long-term outcome in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. Med (Baltim) 98e14920. https://doi.org/10.1097/md.0000000000014920

  19. Canpolat U, Aytemir K, Hazirolan T, Özer N, Oto A (2015) Serum YKL-40 as a marker of Left Atrial Fibrosis assessed by delayed enhancement MRI in Lone Atrial Fibrillation. Pacing Clin Electrophysiol 38:1386–1395. https://doi.org/10.1111/pace.12729

    Article  PubMed  Google Scholar 

  20. Vainio LE, Szabó Z, Lin R et al (2019) Connective tissue growth factor inhibition enhances Cardiac repair and limits Fibrosis after myocardial infarction. JACC Basic Transl Sci 4:83–94. https://doi.org/10.1016/j.jacbts.2018.10.007

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dean RG, Balding LC, Candido R et al (2005) Connective tissue growth factor and cardiac fibrosis after myocardial infarction. J Histochem Cytochem 53:1245–1256. https://doi.org/10.1369/jhc.4A6560.2005

    Article  CAS  PubMed  Google Scholar 

  22. Pedram A, Razandi M, O’Mahony F, Lubahn D, Levin ER (2010) Estrogen receptor-beta prevents cardiac fibrosis. Mol Endocrinol 24:2152–2165. https://doi.org/10.1210/me.2010-0154Epub 2010 Sep 1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma X, Zhao A, Yao Y et al (2015) Therapeutic delivery of cyclin-A2 via recombinant adeno-associated virus serotype 9 restarts the myocardial cell cycle: an in vitro study. Mol Med Rep 11:3652–3658. https://doi.org/10.3892/mmr.2015.3147

    Article  CAS  PubMed  Google Scholar 

  24. Wang X, Jin H, Jiang S, Xu Y (2018) MicroRNA-495 inhibits the high glucose-induced inflammation, differentiation and extracellular matrix accumulation of cardiac fibroblasts through downregulation of NOD1. Cell Mol Biol Lett 23:23. https://doi.org/10.1186/s11658-018-0089-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gong L, Wu X, Li X et al (2020) S1PR3 deficiency alleviates radiation-induced pulmonary fibrosis through the regulation of epithelial-mesenchymal transition by targeting miR-495-3p. J Cell Physiol 235:2310–2324. https://doi.org/10.1002/jcp.29138

    Article  CAS  PubMed  Google Scholar 

  26. Hahne JC, Okuducu AF, Sahin A, Fafeur V, Kiriakidis S, Wernert N (2008) The transcription factor ETS-1: its role in tumour development and strategies for its inhibition. Mini Rev Med Chem 8:1095–1105. https://doi.org/10.2174/138955708785909934

    Article  CAS  PubMed  Google Scholar 

  27. Xu L, Fu M, Chen D et al (2019) Endothelial-specific deletion of Ets-1 attenuates angiotensin II-induced cardiac fibrosis via suppression of endothelial-to-mesenchymal transition. BMB Rep 52:595–600. https://doi.org/10.5483/BMBRep.2019.52.10.206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hao G, Han Z, Meng Z et al (2015) Ets-1 upregulation mediates angiotensin II-related cardiac fibrosis. Int J Clin Exp Pathol 8:10216–10227

    PubMed  PubMed Central  Google Scholar 

  29. Kumar U, Hu Y, Masrour N et al (2021) MicroRNA-495/TGF-β/FOXC1 axis regulates multidrug resistance in metaplastic breast cancer cells. Biochem Pharmacol 192:114692. https://doi.org/10.1016/j.bcp.2021.114692

    Article  CAS  PubMed  Google Scholar 

  30. Czuwara-Ladykowska J, Sementchenko VI, Watson DK, Trojanowska M (2002) Ets1 is an effector of the transforming growth factor beta (TGF-beta) signaling pathway and an antagonist of the profibrotic effects of TGF-beta. J Biol Chem 277:20399–20408. https://doi.org/10.1074/jbc.M200206200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

YP S, XG L and DS M carried out the studies, participated in collecting data, and drafted the manuscript. X S and JT G performed the statistical analysis and participated in its design. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xuguang Liu or Dashi Ma.

Ethics declarations

Competing interests

All the authors declare that they have no conflict of interest.

Ethics approval and consent to participate

All animal experiments conform to the standards of the Animal Ethics Committee. This study was approved by the ethics committee of The First Hospital of Jilin University (SY20191012).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Shan, X., Guo, J. et al. CHI3L1 promotes myocardial fibrosis via regulating lncRNA TUG1/miR-495-3p/ETS1 axis. Apoptosis 28, 1436–1451 (2023). https://doi.org/10.1007/s10495-023-01859-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01859-9

Keywords

Navigation