Skip to main content

Advertisement

Log in

GAS6/Axl is associated with AMPK activation and attenuates H2O2-induced oxidative stress

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Oxidative stress plays a key part in cardiovascular event. Growth arrest-specific gene 6 (GAS6) is a vitamin K-dependent ligand which has been shown to exert important effects in heart. The effects of GAS6 were evaluated against hydrogen peroxide (H2O2) ‑induced oxidative stress injury in HL-1 cardiomyocytes. A series of experimental methods were used to analyze the effects of GAS6 on cell viability, apoptosis, oxidative stress, mitochondrial function and AMPK/ACC signaling in H2O2‑injured HL-1 cells. In this study, we found that H2O2 reduced cell viability, increased apoptotic rate and intracellular reactive oxygen species (ROS). Meanwhile, H2O2 decreased the protein levels of GAS6, and increased the protein level of p-AMPK/AMPK, p-ACC/ACC. Then, we observed that overexpression of GAS6 significantly reduced cell death, manifested as increased cell viability, improved oxidative stress, apoptosis and upregulated the levels of GAS6, p-Axl/Axl, Nrf2, NQO1, HO-1, Bcl-2/Bax, PGC-1α, NRF1, TFAM, p-AMPK/AMPK, and p-ACC/ACC-related protein expression in HL-1 cells and H2O2‑injured cardiomyocytes. To further verify the results, we successfully constructed GAS6 lentiviral vectors, and found GAS6 shRNA partially reversed the above results. These data suggest that AMPK/ACC may be a downstream effector molecule in the antioxidant action of GAS6. In summary, our findings indicate that activation GAS6/Axl-AMPK signaling protects H2O2‑induced oxidative stress which is accompanied by the amelioration of oxidative stress, apoptosis, and mitochondrial function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Sies H, Belousov VV, Chandel NS (2022) Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol

  2. Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94(3):909–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115(3):500–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Qiao P, Zhang B, Liu X (2022) Effects of Escin on oxidative stress and apoptosis of H9c2 cells Induced by H(2)O(2).20227765353

  5. Schneider C, King RM, Philipson L (1988) Genes specifically expressed at growth arrest of mammalian cells. Cell 54(6):787–793

    Article  CAS  PubMed  Google Scholar 

  6. Wu G, Ma Z, Hu W, Wang D, Gong B, Fan C, Jiang S, Li T, Gao J, Yang Y (2017) Molecular insights of Gas6/TAM in cancer development and therapy. Cell Death Dis 8(3):e2700

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li R, Chen J, Hammonds G, Phillips H, Armanini M, Wood P, Bunge R, Godowski PJ, Sliwkowski MX, Mather JP (1996) Identification of Gas6 as a growth factor for human Schwann cells. J Neurosci 16(6):2012–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lemke G, Rothlin CV (2008) Immunobiology of the TAM receptors. Nat Rev Immunol 8(5):327–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Linger RM, Keating AK, Earp HS, Graham DK (2008) TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer.Adv Cancer Res10035–83

  10. Llacuna L, Barcena C, Bellido-Martin L, Fernandez L, Stefanovic M, Mari M, Garcia-Ruiz C, Fernandez-Checa JC, de Garcia P, Morales A (2010) Growth arrest-specific protein 6 is hepatoprotective against murine ischemia/reperfusion injury. Hepatology 52(4):1371–1379

    Article  CAS  PubMed  Google Scholar 

  11. Yang YF, Ai Q, Huang C, Chen JL, Wang J, Xie L, Zhang WZ, Yang JF, Tan ZP (2013) A 1.1 Mb deletion in distal 13q deletion syndrome region with congenital heart defect and postaxial polydactyly: additional support for a CHD locus at distal 13q34 region. Gene 528(1):51–54

    Article  CAS  PubMed  Google Scholar 

  12. Shuvy M, Abedat S, Beeri R, Valitsky M, Daher S, Kott-Gutkowski M, Gal-Moscovici A, Sosna J, Rajamannan NM, Lotan C (2011) Raloxifene attenuates Gas6 and apoptosis in experimental aortic valve disease in renal failure. Am J Physiol Heart Circ Physiol 300(5):H1829–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stenhoff J, Dahlbäck B, Hafizi S (2004) Vitamin K-dependent Gas6 activates ERK kinase and stimulates growth of cardiac fibroblasts. Biochem Biophys Res Commun 319(3):871–878

    Article  CAS  PubMed  Google Scholar 

  14. Hasanbasic I, Cuerquis J, Varnum B, Blostein MD (2004) Intracellular signaling pathways involved in Gas6-Axl-mediated survival of endothelial cells. Am J Physiol Heart Circ Physiol 287(3):H1207–1213

    Article  CAS  PubMed  Google Scholar 

  15. van der Meer JH, van der Poll T, van ‘t Veer C (2014) TAM receptors, Gas6, and protein S: roles in inflammation and hemostasis. Blood 123(16):2460–2469

    Article  PubMed  Google Scholar 

  16. Burstyn-Cohen T, Lew ED, Traves PG, Burrola PG, Hash JC, Lemke G (2012) Genetic dissection of TAM receptor-ligand interaction in retinal pigment epithelial cell phagocytosis. Neuron 76(6):1123–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13(4):251–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carling D (2017) AMPK signalling in health and disease.Curr Opin Cell Biol4531–37

  19. Song P, Zou MH (2012) Regulation of NAD(P)H oxidases by AMPK in cardiovascular systems. Free Radic Biol Med 52(9):1607–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bordoloi J, Ozah D, Bora T, Kalita J, Manna P (2019) Gamma-glutamyl carboxylated Gas6 mediates the beneficial effect of vitamin K on lowering hyperlipidemia via regulating the AMPK/SREBP1/PPARalpha signaling cascade of lipid metabolism.J Nutr Biochem70174–184

  21. Son BK, Akishita M, Iijima K, Kozaki K, Maemura K, Eto M, Ouchi Y (2008) Adiponectin antagonizes stimulatory effect of tumor necrosis factor-alpha on vascular smooth muscle cell calcification: regulation of growth arrest-specific gene 6-mediated survival pathway by adenosine 5’-monophosphate-activated protein kinase. Endocrinology 149(4):1646–1653

    Article  CAS  PubMed  Google Scholar 

  22. Liang Z, Chen Y, Wang Z, Wu X, Deng C, Wang C, Yang W, Tian Y, Zhang S, Lu C, Yang Y (2021) Protective effects and mechanisms of psoralidin against adriamycin-induced cardiotoxicity. Journal of Advanced Research

  23. Niu X, Cheng Y, Zhang M, Du L, Wu X, Lu C, Li X, Liu S, Zhao A, Zhang S, Wu Z, Ding B, Shi W, Wang C, Yang Y, Tian Y (2021) Neuroprotective Effects of Omentin-1 Against Cerebral Hypoxia/Reoxygenation Injury via activating GAS6/Axl signaling pathway in Neuroblastoma cells.Front Cell Dev Biol9784035

  24. Zhu Y, Di S, Hu W, Feng Y, Zhou Q, Gong B, Tang X, Liu J, Zhang W, Xi M, Jiang L, Guo C, Cao J, Fan C, Ma Z, Yang Y, Wen A (2017) A new flavonoid glycoside (APG) isolated from Clematis tangutica attenuates myocardial ischemia/reperfusion injury via activating PKCepsilon signaling. Biochim Biophys Acta 1863(3):701–711

    Article  CAS  Google Scholar 

  25. Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4180 – 183

  26. Storz G, Imlay JA (1999) Oxidative stress. Curr Opin Microbiol 2(2):188–194

    Article  CAS  PubMed  Google Scholar 

  27. García N, Zazueta C (2017) Oxidative Stress and Inflammation in Cardiovascular Disease. 20175853238

  28. Pignatelli P, Menichelli D, Pastori D, Violi F (2018) Oxidative stress and cardiovascular disease: new insights. Kardiol Pol 76(4):713–722

    Article  PubMed  Google Scholar 

  29. Siti HN, Kamisah Y, Kamsiah J (2015) The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review).Vascul Pharmacol7140–56

  30. Bellezza I, Giambanco I, Minelli A, Donato R (2018) Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res 1865(5):721–733

    Article  CAS  PubMed  Google Scholar 

  31. Chen QM, Maltagliati AJ (2018) Nrf2 at the heart of oxidative stress and cardiac protection. Physiol Genomics 50(2):77–97

    Article  CAS  PubMed  Google Scholar 

  32. Xiong Y, Wang Y, Xiong Y (2021) Protective effect of Salidroside on hypoxia-related liver oxidative stress and inflammation via Nrf2 and JAK2/STAT3 signaling pathways. 9:5060–50699

  33. Axelrod H, Pienta KJ (2014) Axl as a mediator of cellular growth and survival. Oncotarget 5(19):8818–8852

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pao-Chun L, Chan PM, Chan W, Manser E (2009) Cytoplasmic ACK1 interaction with multiple receptor tyrosine kinases is mediated by Grb2: an analysis of ACK1 effects on Axl signaling. J Biol Chem 284(50):34954–34963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Braunger J, Schleithoff L, Schulz AS, Kessler H, Lammers R, Ullrich A, Bartram CR, Janssen JW (1997) Intracellular signaling of the Ufo/Axl receptor tyrosine kinase is mediated mainly by a multi-substrate docking-site. Oncogene 14(22):2619–2631

    Article  CAS  PubMed  Google Scholar 

  36. Konishi A, Aizawa T, Mohan A, Korshunov VA, Berk BC (2004) Hydrogen peroxide activates the Gas6-Axl pathway in vascular smooth muscle cells. J Biol Chem 279(27):28766–28770

    Article  CAS  PubMed  Google Scholar 

  37. Valverde P (2005) Effects of Gas6 and hydrogen peroxide in Axl ubiquitination and downregulation. Biochem Biophys Res Commun 333(1):180–185

    Article  CAS  PubMed  Google Scholar 

  38. D’Arcangelo D, Ambrosino V, Giannuzzo M, Gaetano C, Capogrossi MC (2006) Axl receptor activation mediates laminar shear stress anti-apoptotic effects in human endothelial cells. Cardiovasc Res 71(4):754–763

    Article  PubMed  Google Scholar 

  39. Chen YC, Chien CY, Hsu CC, Lee CH, Chou YT, Shiah SG, Liu SY, Yen CY, Hsieh AC, Wabitsch M, Shieh YS (2021) Obesity-associated leptin promotes chemoresistance in colorectal cancer through YAP-dependent AXL upregulation. Am J Cancer Res 11(9):4220–4240

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bae S, Park M, Kang C, Dilmen S, Kang TH, Kang DG, Ke Q, Lee SU, Lee D, Kang PM (2016) Hydrogen peroxide-responsive nanoparticle reduces myocardial Ischemia/Reperfusion Injury.J Am Heart Assoc5(11)

  41. Porter AG, Jänicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6(2):99–104

    Article  CAS  PubMed  Google Scholar 

  42. Christidi E, Brunham LR (2021) Regulated cell death pathways in doxorubicin-induced cardiotoxicity. 12:3394

  43. Li Y, Xia J, Jiang N, Xian Y, Ju H, Wei Y, Zhang X (2018) Corin protects H(2)O(2)-induced apoptosis through PI3K/AKT and NF-κB pathway in cardiomyocytes.Biomed Pharmacother97594–599

  44. Xu A, Liu J, Liu P, Jia M, Wang H, Tao L (2014) Mitochondrial translocation of Nur77 induced by ROS contributed to cardiomyocyte apoptosis in metabolic syndrome. Biochem Biophys Res Commun 446(4):1184–1189

    Article  CAS  PubMed  Google Scholar 

  45. Sies H, Jones DP (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 21(7):363–383

    Article  CAS  PubMed  Google Scholar 

  46. Hardie DG, Schaffer BE, Brunet A (2016) AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol 26(3):190–201

    Article  CAS  PubMed  Google Scholar 

  47. Rodríguez C, Contreras C, Sáenz-Medina J, Muñoz M, Corbacho C, Carballido J, García-Sacristán A, Hernandez M, López M, Rivera L, Prieto D (2020) Activation of the AMP-related kinase (AMPK) induces renal vasodilatation and downregulates Nox-derived reactive oxygen species (ROS) generation. Redox Biol 34101575.

  48. Wang ZP, Shen D, Che Y, Jin YG, Wang SS, Wu QQ, Zhou H, Meng YY, Yuan Y (2019) Corosolic acid ameliorates cardiac hypertrophy via regulating autophagy.Biosci Rep39(12)

  49. Zhu J, Wang YF, Chai XM, Qian K, Zhang LW, Peng P, Chen PM, Cao JF, Qin ZH, Sheng R, Xie H (2020) Exogenous NADPH ameliorates myocardial ischemia-reperfusion injury in rats through activating AMPK/mTOR pathway. Acta Pharmacol Sin 41(4):535–545

    Article  CAS  PubMed  Google Scholar 

  50. Liu Z, Qu CY, Li JX, Wang YF, Li W (2021) Hypoglycemic and Hypolipidemic Effects of Malonyl Ginsenosides from American Ginseng (Panax quinquefolius L.) on type 2 Diabetic mice. 6:33652–3366449

  51. Lv H, An B, Yu Q, Cao Y, Liu Y, Li S (2020) The hepatoprotective effect of myricetin against lipopolysaccharide and D-galactosamine-induced fulminant hepatitis.Int J Biol Macromol1551092–1104

  52. Jeong A, Kim JH, Lee HJ, Kim SH (2017) Reactive oxygen species dependent phosphorylation of the liver kinase B1/AMP activated protein kinase/ acetyl-CoA carboxylase signaling is critically involved in apoptotic effect of lambertianic acid in hepatocellular carcinoma cells. Oncotarget 8(41):70116–70129

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tian L, Cao W, Yue R, Yuan Y, Guo X, Qin D, Xing J, Wang X (2019) Pretreatment with tilianin improves mitochondrial energy metabolism and oxidative stress in rats with myocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1 alpha signaling pathway. J Pharmacol Sci 139(4):352–360

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Youth Science and Technology Rising Star Project of Shaanxi Province (2020KJXX-036), and Innovation Capability Strong Foundation Plan of Xi’an City (Medical Research Project, 21YXYJ0037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Xu.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Yang, Y., Wu, X. et al. GAS6/Axl is associated with AMPK activation and attenuates H2O2-induced oxidative stress. Apoptosis 28, 485–497 (2023). https://doi.org/10.1007/s10495-022-01801-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01801-5

Keywords

Navigation