Skip to main content
Log in

DDI2 promotes tumor metastasis and resists antineoplastic drugs-induced apoptosis in colorectal cancer

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The normal colorectal mucosa undergoes precancerous lesions that can develop over time into colorectal cancer (CRC). In the stage of precancerous lesions, DNA replication stress may lead to genome instability. We have performed whole-exome sequencing on genomic DNA obtained from three cases of CRC tissues and identified a novel frameshift mutation of DNA damage inducible 1 homolog 2 gene (DDI2, c. 854 del T). To date, there is no direct evidence that DDI2 is involved in the carcinogenesis of CRC. In this study, we demonstrated that DDI2 is upregulated in the early stage of CRC based on clinical samples and public databases. We also found that 5FU, a standard chemotherapeutic agent for CRC treatment, increased DDI2 mRNA levels in a dose-dependent manner. Depression of DDI2 inhibited CRC cell proliferation, migration and invasion both in vitro and in vivo. Transcriptome sequencing revealed that DDI2 was involved in the mitogen-activated protein kinase (MAPK) pathway. Furthermore, DDI2 resists a MAPK kinase (MEK) inhibitor (trametinib) and a PolyADP-ribose polymerase 1 (PARP1) inhibitor (talazoparib) induced apoptosis in CRC cells. Thus, our results indicate that DDI2 may play a vital role in the carcinogenesis of CRC and could serve as a promising therapeutic target for CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. Cancer J Clin 69(1):7–34

    Article  Google Scholar 

  2. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Smits AM, Bos JL (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319(9):525–532

    Article  CAS  PubMed  Google Scholar 

  3. Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319(5868):1352–1355

    Article  CAS  PubMed  Google Scholar 

  4. Macheret M, Halazonetis TD (2015) DNA replication stress as a hallmark of cancer. Annu Rev Pathol 10:425–448

    Article  CAS  PubMed  Google Scholar 

  5. Kottemann MC, Conti BA, Lach FP, Smogorzewska A (2018) Removal of RTF2 from stalled replisomes promotes maintenance of genome integrity. Mol Cell 69(1):24–35

    Article  CAS  PubMed  Google Scholar 

  6. Koizumi S, Irie T, Hirayama S, Sakurai Y, Yashiroda H, Naguro I, Ichijo H, Hamazaki J, Murata S (2016) The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction. Elife 5:e18357

    Article  PubMed Central  PubMed  Google Scholar 

  7. Dirac-Svejstrup AB, Walker J, Faull P, Encheva V, Akimov V, Puglia M, Perkins D, Kümper S, Hunjan SS, Blagoev B (2020) DDI2 is a ubiquitin-directed endoprotease responsible for cleavage of transcription factor NRF1. Mol Cell 79(2):332–341-e337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Radhakrishnan SK, Lee CS, Young P, Beskow A, Chan JY, Deshaies RJ (2010) Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol Cell 38(1):17–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Gu Y, Wang X, Wang Y, Li J, Yu F-x (2020) HIV protease inhibitor Nelfinavir targets human DDI2 and potentiates proteasome inhibitor-based chemotherapy. bioRxiv. https://doi.org/10.1101/2020.05.03.075572

    Article  Google Scholar 

  10. Northrop A, Vangala JR, Feygin A, Radhakrishnan SK (2020) Disabling the protease DDI2 attenuates the transcriptional activity of NRF1 and potentiates proteasome inhibitor cytotoxicity. Int J Mol Sci 21(1):327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Sebolt-Leopold JS, Herrera R (2004) Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4(12):937–947

    Article  CAS  PubMed  Google Scholar 

  12. Ryan MB, Der CJ, Wang-Gillam A, Cox AD (2015) Targeting RAS-mutant cancers: is ERK the key? Trends Cancer 1(3):183–198

    Article  PubMed Central  PubMed  Google Scholar 

  13. Sun C, Fang Y, Yin J, Chen J, Ju Z, Zhang D, Chen X, Vellano CP, Jeong KJ, Ng PK-S (2017) Rational combination therapy with PARP and MEK inhibitors capitalizes on therapeutic liabilities in RAS mutant cancers. Sci Transl Med 9(392):eaal5148

    Article  PubMed Central  PubMed  Google Scholar 

  14. Chaudhuri AR, Nussenzweig A (2017) The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol 18(10):610–621

    Article  Google Scholar 

  15. Cohen-Armon M (2007) PARP-1 activation in the ERK signaling pathway. Trends Pharmacol Sci 28(11):556–560

    Article  CAS  PubMed  Google Scholar 

  16. Visochek L, Grigoryan G, Kalal A, Milshtein-Parush H, Gazit N, Slutsky I, Yeheskel A, Shainberg A, Castiel A, Seger R (2016) A PARP1-ERK2 synergism is required for the induction of LTP. Sci Rep 6(1):1–16

    Article  Google Scholar 

  17. Cohen-Armon M, Yeheskel A, Pascal JM (2019) Signal-induced PARP1-Erk synergism mediates IEG expression. Signal Transduct Target therapy 4(1):1–8

    Google Scholar 

  18. Chen E, Yang F, He H, Li Q, Zhang W, Xing J, Zhu Z, Jiang J, Wang H, Zhao X (2018) Alteration of tumor suppressor BMP5 in sporadic colorectal cancer: a genomic and transcriptomic profiling based study. Mol Cancer 17(1):1–13

    Article  Google Scholar 

  19. Lei L, Zhao X, Liu S, Cao Q, Yan B, Yang J (2019) MicroRNA-3607 inhibits the tumorigenesis of colorectal cancer by targeting DDI2 and regulating the DNA damage repair pathway. Apoptosis 24(7–8):662–672

    Article  CAS  PubMed  Google Scholar 

  20. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Sobrero AF, Aschele C, Bertino JR (1997) Fluorouracil in colorectal cancer–a tale of two drugs: implications for biochemical modulation. J Clin Oncol 15(1):368–381

    Article  CAS  PubMed  Google Scholar 

  22. Hagenkort A, Paulin CB, Desroses M, Sarno A, Wiita E, Mortusewicz O, Koolmeister T, Loseva O, Jemth A-S, Almlöf I (2017) dUTPase inhibition augments replication defects of 5-Fluorouracil. Oncotarget 8(14):23713

    Article  PubMed Central  PubMed  Google Scholar 

  23. Lee JM, Dedhar S, Kalluri R, Thompson EW (2006) The epithelial–mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172(7):973–981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Beckman RA, Loeb LA (2006) Efficiency of carcinogenesis with and without a mutator mutation. Proc Natl Acad Sci 103(38):14140–14145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Sharp SP, Malizia RA, Walrath T, D’Souza SS, Booth CJ, Kartchner BJ, Lee EC, Stain SC, O’Connor W Jr (2018) DNA damage response genes mark the early transition from colitis to neoplasia in colitis-associated colon cancer. Gene 677:299–307

    Article  CAS  PubMed  Google Scholar 

  26. Ingraham HA, Tseng B, Goulian M (1982) Nucleotide levels and incorporation of 5-fluorouracil and uracil into DNA of cells treated with 5-fluorodeoxyuridine. Mol Pharmacol 21(1):211–216

    CAS  PubMed  Google Scholar 

  27. Glazer RI, Lloyd LS (1982) Association of cell lethality with incorporation of 5-fluorouracil and 5-fluorouridine into nuclear RNA in human colon carcinoma cells in culture. Mol Pharmacol 21(2):468–473

    CAS  PubMed  Google Scholar 

  28. Waldner MJ, Neurath MF (2012) Targeting the VEGF signaling pathway in cancer therapy. Expert Opin Ther Targets 16(1):5–13

    Article  CAS  PubMed  Google Scholar 

  29. Gu Y, Wang X, Wang Y, Wang Y, Li J, Yu F-X (2020) Nelfinavir inhibits human DDI2 and potentiates cytotoxicity of proteasome inhibitors. Cell Signal 75:109775

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (Grant No. 31401081) and the Key Science and Technology Program of Shaanxi Province (Grant No. 2019ZDLSF02-05).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: LL and JY; acquisition of data: LL, QC, GA, YL and JT; analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): LL and QC; writing and review of the manuscript: LL; study supervision: LL and JY.

Corresponding author

Correspondence to Jin Yang.

Ethics declarations

Conflict of interest

All authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 75.2 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, L., Cao, Q., An, G. et al. DDI2 promotes tumor metastasis and resists antineoplastic drugs-induced apoptosis in colorectal cancer. Apoptosis 28, 458–470 (2023). https://doi.org/10.1007/s10495-022-01796-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01796-z

Keywords

Navigation