Skip to main content

Advertisement

Log in

DNA damage induces STING mediated IL-6-STAT3 survival pathway in triple-negative breast cancer cells and decreased survival of breast cancer patients

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Triple-negative breast cancer is aggressive and metastatic breast cancer type and shows immune evasion, drug resistance, relapse and poor survival. Anti-cancer therapy like ionizing radiation and chemotherapeutic drug majorly induces DNA damage hence, alteration in DNA damage repair and downstream pathways may contribute to tumor cell survival. DNA damage during chemotherapy is sensed by cyclic GMP-AMP synthase(cGAS)-stimulator of interferon genes (STING), which determines the anti-tumor immune response by modulating the expression of programmed cell death ligand-1 (PD-L1), immune suppressor, in the tumor microenvironment. Triple-negative breast cancer cells are cGAS-STING positive and modulation of this pathway during DNA damage response for survival and immune escape mechanism is not well understood. Here we demonstrate that doxorubicin-mediated DNA damage induces STING mediated NF-κB activation in triple-negative as compared to ER/PR positive breast cancer cells. STING-mediated NF-κB induces the expression of IL-6 in triple-negative breast cancer cells and activates pSTAT3, which enhances cell survival and PD-L1 expression. Doxorubicin and STAT3 inhibitor act synergistically and inhibit cell survival and clonogenicity in triple-negative breast cancer cells. Knockdown of STING in triple-negative breast cancer cells enhances CD8 mediated immune cell death of breast cancer cells. The combinatorial treatment of triple-negative breast cells with doxorubicin and STAT3 inhibitor reduces PD-L1 expression and activates immune cell-mediated cancer cell death. Further STING and IL-6 levels show a positive correlation in breast cancer patients and poor survival outcomes. The study here strongly suggests that STING mediated activation of NF-κB enhances IL-6 mediated STAT3 in triple-negative breast cancer cells which induces cell survival and immune-suppressive mechanism.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Cacho-Díaz B, García-Botello DR, Wegman-Ostrosky T, Reyes-Soto G, Ortiz-Sánchez E, Herrera-Montalvo LA (2020) Tumor microenvironment differences between primary tumor and brain metastases. J Med Transl. https://doi.org/10.1186/S12967-019-02189-8

    Article  Google Scholar 

  2. Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci. https://doi.org/10.1242/jcs.116392

    Article  PubMed  Google Scholar 

  3. Ostrand-Rosenberg S (2008) Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev 18(1):11–18. https://doi.org/10.1016/J.GDE.2007.12.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Gonzalez H, Hagerling C, Werb Z (2018) Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 32(19–20):1267–1284. https://doi.org/10.1101/GAD.314617.118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Kc C, Md M, Ta W (2019) Cytokines in the treatment of cancer. J Interferon Cytokine Res 39(1):6–21. https://doi.org/10.1089/JIR.2018.0019

    Article  Google Scholar 

  6. Chen W, Qin Y, Liu S (2018) Cytokines, breast cancer stem cells (BCSCs) and chemoresistance. Clin Transl Med 7(1):27. https://doi.org/10.1186/S40169-018-0205-6

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lázár-Molnár E, Hegyesi H, Tóth S, Falus A (2000) Autocrine and paracrine regulation by cytokines and growth factors in melanoma. Cytokine 12(6):547–554. https://doi.org/10.1006/CYTO.1999.0614

    Article  PubMed  Google Scholar 

  8. Dethlefsen C, Højfeldt G, Hojman P (2013) The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Res Treat 138(3):657–664. https://doi.org/10.1007/S10549-013-2488-Z

    Article  PubMed  CAS  Google Scholar 

  9. Ravishankaran P, Karunanithi R (2011) Clinical significance of preoperative serum interleukin-6 and C-reactive protein level in breast cancer patients. World J Surg Oncol 9:18. https://doi.org/10.1186/1477-7819-9-18

    Article  PubMed  PubMed Central  Google Scholar 

  10. Méndez-García LA, Nava-Castro KE, Ochoa-Mercado TDL, Palacios-Arreola MI, Ruiz-Manzano RA, Segovia-Mendoza M, Solleiro-Villavicencio H, Cázarez-Martínez C, Morales-Montor J (2019) Breast cancer metastasis: are cytokines important players during its development and progression? J Interferon Cytokine Res 39(1):39–55. https://doi.org/10.1089/JIR.2018.0024

    Article  PubMed  Google Scholar 

  11. Pa J et al (2018) High content imaging assays for IL-6-induced STAT3 pathway activation in head and neck cancer cell lines. Methods Mol Biol 1683:229–244. https://doi.org/10.1007/978-1-4939-7357-6_14

    Article  CAS  Google Scholar 

  12. Saha S et al (2016) Aspirin suppresses the acquisition of chemoresistance in breast cancer by disrupting an NFκB–IL6 signaling axis responsible for the generation of cancer stem cells. Cancer Res 76(7):2000–2012. https://doi.org/10.1158/0008-5472.CAN-15-1360

    Article  PubMed  CAS  Google Scholar 

  13. Mackenzie KJ et al (2017) cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548(7668):461. https://doi.org/10.1038/NATURE23449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Sf B et al (2018) Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553(7689):467–472. https://doi.org/10.1038/NATURE25432

    Article  Google Scholar 

  15. Juneja VR et al (2017) PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity. J Exp Med 214(4):895. https://doi.org/10.1084/JEM.20160801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Bhatelia K et al (2014) Antiviral signaling protein MITA acts as a tumor suppressor in breast cancer by regulating NF-κB induced cell death. Biochim Biophys Acta. https://doi.org/10.1016/j.bbadis.2013.11.006

    Article  PubMed  Google Scholar 

  17. Pei J et al (2019) STAT3 inhibition enhances CDN-induced STING signaling and antitumor immunity. Cancer Lett 450:110–122. https://doi.org/10.1016/J.CANLET.2019.02.029

    Article  PubMed  CAS  Google Scholar 

  18. Reisländer T, Groelly FJ, Tarsounas M (2020) DNA damage and cancer immunotherapy: a STING in the tale. Mol Cell 80(1):21–28. https://doi.org/10.1016/J.MOLCEL.2020.07.026

    Article  PubMed  Google Scholar 

  19. Ran FAFA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308. https://doi.org/10.1038/NPROT.2013.143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Tomar D, Sripada L, Prajapati P, Singh R, Singh AK, Singh R (2012) Nucleo-cytoplasmic trafficking of TRIM8, a novel oncogene, is involved in positive regulation of TNF induced NF-κB pathway. PLoS ONE 7(11):e48662. https://doi.org/10.1371/JOURNAL.PONE.0048662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Tomar D, Singh R, Singh AK, Pandya CD, Singh R (2012) TRIM13 regulates ER stress induced autophagy and clonogenic ability of the cells. Biochim Biophys Acta 1823(2):316–326. https://doi.org/10.1016/j.bbamcr.2011.11.015

    Article  PubMed  CAS  Google Scholar 

  22. Nagy Á, Munkácsy G, Győrffy B (2021) Pancancer survival analysis of cancer hallmark genes. Sci Rep 11(1):6047. https://doi.org/10.1038/s41598-021-84787-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Li T et al (2021) TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res 48(W1):W509–W514. https://doi.org/10.1093/NAR/GKAA407

    Article  Google Scholar 

  24. Wilkinson RDA et al (2019) Topoisomerase II inhibitors induce cGAS-STING dependent inflammation resulting in cytokine induction and immune checkpoint activation. bioRxiv: 764662

  25. Nagelkerke A, Span PN (2016) Staining against phospho-H2AX (γ-H2AX) as a marker for DNA damage and genomic instability in cancer tissues and cells. Adv Exp Med Biol 899:1–10. https://doi.org/10.1007/978-3-319-26666-4_1

    Article  PubMed  CAS  Google Scholar 

  26. Wang W, Mani AM, Wu Z-H (2017) DNA damage-induced nuclear factor-kappa B activation and its roles in cancer progression. J Cancer Metastasis Treat 3(3):45. https://doi.org/10.20517/2394-4722.2017.03

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. McFarland BC et al (2013) NF-κB-induced IL-6 ensures STAT3 activation and tumor aggressiveness in glioblastoma. PLoS ONE 8(11):e78728. https://doi.org/10.1371/JOURNAL.PONE.0078728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Xia L et al (2018) Role of the NFκB-signaling pathway in cancer. Onco Targets Ther 11:2063. https://doi.org/10.2147/OTT.S161109

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mauer J, Denson JL, Brüning JC (2015) Versatile functions for IL-6 in metabolism and cancer. Trends Immunol 36(2):92–101. https://doi.org/10.1016/J.IT.2014.12.008

    Article  PubMed  CAS  Google Scholar 

  30. Zou S, Tong Q, Liu B, Huang W, Tian Y, Fu X (2020) Targeting STAT3 in cancer immunotherapy. Mol Cancer 19(1):1–19. https://doi.org/10.1186/S12943-020-01258-7

    Article  Google Scholar 

  31. Sato H et al (2017) DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat Commun 8(1):1–11. https://doi.org/10.1038/s41467-017-01883-9

    Article  CAS  Google Scholar 

  32. Dunphy G, Flannery SM, Almine JF, Connolly DJ, Paulus C, Jønsson KL et al (2018) Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-κB signaling after nuclear DNA damage. Mol Cell 71(5):745–760. https://doi.org/10.1016/J.MOLCEL.2018.07.034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Li Z et al (2019) A novel STAT3 inhibitor, HJC0152, exerts potent antitumor activity in glioblastoma. Am J Cancer Res 9(4):699

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Bromberg MWGDYZRPCAJDJF (1999) Stat3 as an oncogene. Cell 98(3):295–303. https://doi.org/10.1016/s0092-8674(00)81959-5

    Article  PubMed  CAS  Google Scholar 

  35. Gariboldi MB, Ravizza R, Molteni R, Osella D, Gabano E, Monti E (2007) Inhibition of Stat3 increases doxorubicin sensitivity in a human metastatic breast cancer cell line. Cancer Lett 258(2):181–188. https://doi.org/10.1016/J.CANLET.2007.08.019

    Article  PubMed  CAS  Google Scholar 

  36. Li T et al (2017) TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res 77(21):e108–e110. https://doi.org/10.1158/0008-5472.CAN-17-0307/SUPPLEMENTARY-VIDEO-S1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Shen R et al (2022) DNA damage and activation of cGAS/STING pathway induce tumor microenvironment remodeling. Front Cell Dev Biol 9:3915. https://doi.org/10.3389/FCELL.2021.828657/BIBTEX

    Article  Google Scholar 

  38. Bareche Y et al (2020) Unraveling triple-negative breast cancer tumor microenvironment heterogeneity: towards an optimized treatment approach. JNCI J Natl Cancer Inst 112(7):708–719. https://doi.org/10.1093/JNCI/DJZ208

    Article  PubMed  Google Scholar 

  39. da Hoong BY, Gan YH, Liu H, Chen ES (2020) cGAS-STING pathway in oncogenesis and cancer therapeutics. Oncotarget 11(30):2930–2955. https://doi.org/10.18632/oncotarget.27673

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cheradame L et al (2020) STING promotes breast cancer cell survival by an inflammatory-independent nuclear pathway enhancing the DNA damage response. bioRxiv. https://doi.org/10.1101/2020.07.11.196790.

  41. Wahba HA, El-Hadaad HA (2015) Current approaches in treatment of triple-negative breast cancer. Cancer Biol Med 12(2):106. https://doi.org/10.7497/J.ISSN.2095-3941.2015.0030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Johnson DE, O’Keefe RA, Grandis JR (2018) Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol 15(4):234. https://doi.org/10.1038/NRCLINONC.2018.8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Jiang X et al (2018) HJC0152, a novel STAT3 inhibitor with promising anti-tumor effect in gastric cancer. Cancer Manag Res 10:6857. https://doi.org/10.2147/CMAR.S188364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Parkes EE et al (2016) Activation of STING-dependent innate immune signaling by S-phase-specific DNA damage in breast cancer. J Natl Cancer Inst. https://doi.org/10.1093/JNCI/DJW199

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bu LL et al (2017) STAT3 induces immunosuppression by upregulating PD-1/PD-L1 inHNSCC. J Dent Res 96(9):1027. https://doi.org/10.1177/0022034517712435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Zerdes I et al (2019) STAT3 activity promotes programmed-death ligand 1 expression and suppresses immune responses in breast cancer. Cancers (Basel). https://doi.org/10.3390/CANCERS11101479

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Department of Science and Technology, Govt. of India, Grant Number INT/Korea/P-39 to Prof. Rajesh Singh. Authors also acknowledged pratical support from GSBTM, GJ, India The authors acknowledge the instrumentation facility at the Department of Biochemistry, The M. S. University of Baroda, Vadodara under the DST FIST program. DBT BUILIDER program supported by Department of Biotechnology, Govt of India. Minal Mane received her fellowship from CSIR, Govt. of India. Dhruv Gohel received his fellowship from ICMR, India. Fatema Currim received her fellowship from the DST-INSPIRE program, India. Anjali Shinde is ICMR SRF.

Funding

Department of Science and Technology, Govt. of India, Grant Number INT/Korea/P-39 to Prof. Rajesh Singh.

Author information

Authors and Affiliations

Authors

Contributions

HV: conceptualization, methodology, formal analysis, investigation, writing—original draft, AS: data curation, writing—review and editing, resources; MR: writing—review and editing, resources; MM: resources; JS: resources; DG: resources; FC: resources; KR: data curation, resources; RS: resources; RS: funding acquisition, project administration, supervision, conceptualization, writing—review and editing.

Corresponding author

Correspondence to Rajesh Singh.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent of publication

I, the undersigned, give my consent for the publication of identifiable details, which can include a photograph(s) and/or videos and/or case history and/or details within the text (“Material”) to be published in a journal of Apoptosis.

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasiyani, H., Mane, M., Rana, K. et al. DNA damage induces STING mediated IL-6-STAT3 survival pathway in triple-negative breast cancer cells and decreased survival of breast cancer patients. Apoptosis 27, 961–978 (2022). https://doi.org/10.1007/s10495-022-01763-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01763-8

Keywords

Navigation