Skip to main content
Log in

The functions of lncRNAs in the HPV-negative cervical cancer compared with HPV-positive cervical cancer

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Cervical cancer is one of the most common female malignancies. Human papillomaviruses (HPV) are the main causative agents of virtually all cervical carcinomas. Nevertheless, emerging evidence has demonstrated that a small proportion of cervical cancer patients are HPV negative. Long noncoding RNAs (lncRNAs) have been identified to play a crucial role in cervical cancer development. Here, this review describes the incidence and development of HPV-negative cervical cancer. Moreover, HPV-negative cervical cancers are more likely diagnosed at non-squamous type, older ages, more advanced stage and metastases, and associated with poorer prognosis as compared to HPV-positive cervical cancer. Furthermore, the significant role and functions of lncRNAs underlying HPV-negative cervical cancer is clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data supporting this study are available within the article.

Abbreviations

AC:

Adenocarcinoma

DFS:

Disease-free survival

FIGO:

International Federation of Gynecology and Obstetrics

HC2:

Hybrid Capture 2

HPV:

Human papillomavirus

OS:

Overall survival

lncRNA:

Long non-coding RNA

PCR:

Polymerase chain reaction

SCC:

Squamous cell carcinoma

References

  1. Koh WJ, Greer BE, Abu-Rustum NR et al (2015) Cervical cancer, version 2.2015. J Natl Compr Cancer Netw 13:395–404

    Article  CAS  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin 68:394–424

    Article  Google Scholar 

  3. Gien LT, Beauchemin MC, Thomas G (2010) Adenocarcinoma: a unique cervical cancer. Gynecol Oncol 116:140–146

    Article  CAS  PubMed  Google Scholar 

  4. zur Hausen H. (2002) Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2:342–350

    Article  PubMed  CAS  Google Scholar 

  5. Hildesheim A, Gonzalez P, Kreimer AR et al (2016) Impact of human papillomavirus (HPV) 16 and 18 vaccination on prevalent infections and rates of cervical lesions after excisional treatment. Am J Obstet Gynecol 215(212):e211-212.e215

    Google Scholar 

  6. Barreto CL, Martins DB, de Lima Filho JL, Magalhaes V (2013) Detection of human papillomavirus in biopsies of patients with cervical cancer, and its association with prognosis. Arch Gynecol Obstet 288:643–648

    Article  CAS  PubMed  Google Scholar 

  7. Higgins GD, Davy M, Roder D, Uzelin DM, Phillips GE, Burrell CJ (1991) Increased age and mortality associated with cervical carcinomas negative for human papillomavirus RNA. Lancet 338:910–913

    Article  CAS  PubMed  Google Scholar 

  8. Perkel JM (2013) Visiting “noncodarnia.” Biotechniques 54(301):303–304

    Google Scholar 

  9. Yang G, Lu X, Yuan L (2014) LncRNA: a link between RNA and cancer. Biochem Biophys Acta 1839:1097–1109

    CAS  PubMed  Google Scholar 

  10. Orom UA, Derrien T, Beringer M et al (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143:46–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Prensner JR, Chinnaiyan AM (2011) The emergence of lncRNAs in cancer biology. Cancer Discov 1:391–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cheng T, Huang S (2021) Roles of Non-Coding RNAs in Cervical Cancer Metastasis. Front Oncol 11:646192

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu J, Shang G (2022) The roles of noncoding RNAs in the development of osteosarcoma stem cells and potential therapeutic targets. Front Cell Dev Biol 10:773038

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jiang W, Xia J, Xie S et al (2020) Long non-coding RNAs as a determinant of cancer drug resistance: towards the overcoming of chemoresistance via modulation of lncRNAs. Drug Resist Updat 50:100683

    Article  PubMed  Google Scholar 

  15. Jiang W, Pan S, Chen X, Wang ZW, Zhu X (2021) The role of lncRNAs and circRNAs in the PD-1/PD-L1 pathway in cancer immunotherapy. Mol Cancer 20:116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lin M, Xu Y, Gao Y, Pan C, Zhu X, Wang ZW (2019) Regulation of F-box proteins by noncoding RNAs in human cancers. Cancer Lett 466:61–70

    Article  CAS  PubMed  Google Scholar 

  17. Ooi S, Liao Y, Liu P, Xu G, Liu T, Yao S (2020) Identification of long noncoding RNA expression profiles in HPV-negative cervical cancer. Gynecol Obstet Invest 85:377–387

    Article  CAS  PubMed  Google Scholar 

  18. Ta W, Zhang Y, Zhang S, Sun P (2020) LncRNA ANCR downregulates hypoxiainducible factor 1alpha and inhibits the growth of HPVnegative cervical squamous cell carcinoma under hypoxic conditions. Mol Med Rep 21:413–419

    CAS  PubMed  Google Scholar 

  19. Tornesello ML, Faraonio R, Buonaguro L et al (2020) The role of microRNAs, long non-coding RNAs, and circular RNAs in cervical cancer. Front Oncol 10:150

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gao Y, Zou T, Liang W, Zhang Z, Qie M (2021) Long non-coding RNA HAND2-AS1 delays cervical cancer progression via its regulation on the microRNA-21-5p/TIMP3/VEGFA axis. Cancer Gene Ther 28:619–633

    Article  CAS  PubMed  Google Scholar 

  21. Li P, Wang J, Zhi L, Cai F (2021) Linc00887 suppresses tumorigenesis of cervical cancer through regulating the miR-454-3p/FRMD6-Hippo axis. Cancer Cell Int 21:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morrison C, Catania F, Wakely P Jr, Nuovo GJ (2001) Highly differentiated keratinizing squamous cell cancer of the cervix: a rare, locally aggressive tumor not associated with human papillomavirus or squamous intraepithelial lesions. Am J Surg Pathol 25:1310–1315

    Article  CAS  PubMed  Google Scholar 

  23. Casey S, Harley I, Jamison J, Molijn A, van den Munckhof H, McCluggage WG (2015) A rare case of HPV-negative cervical squamous cell carcinoma. Int J Gynecol Pathol 34:208–212

    Article  PubMed  Google Scholar 

  24. Tao X, Griffith CC, Zhou X et al (2015) History of high-risk HPV and Pap test results in a large cohort of patients with invasive cervical carcinoma: experience from the largest women’s hospital in China. Cancer Cytopathol 123:421–427

    Article  PubMed  Google Scholar 

  25. Nicolas I, Marimon L, Barnadas E et al (2019) HPV-negative tumors of the uterine cervix. Mod Pathol 32:1189–1196

    Article  CAS  PubMed  Google Scholar 

  26. Park KJ, Kiyokawa T, Soslow RA et al (2011) Unusual endocervical adenocarcinomas: an immunohistochemical analysis with molecular detection of human papillomavirus. Am J Surg Pathol 35:633–646

    Article  PubMed  Google Scholar 

  27. Holl K, Nowakowski AM, Powell N et al (2015) Human papillomavirus prevalence and type-distribution in cervical glandular neoplasias: results from a European multinational epidemiological study. Int J Cancer 137:2858–2868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. de Cremoux P, de la Rochefordiere A, Savignoni A et al (2009) Different outcome of invasive cervical cancer associated with high-risk versus intermediate-risk HPV genotype. Int J Cancer 124:778–782

    Article  PubMed  CAS  Google Scholar 

  29. Andersson S, Rylander E, Larsson B, Strand A, Silfversvard C, Wilander E (2001) The role of human papillomavirus in cervical adenocarcinoma carcinogenesis. Eur J Cancer 37:246–250

    Article  CAS  PubMed  Google Scholar 

  30. Tenti P, Romagnoli S, Silini E et al (1996) Human papillomavirus types 16 and 18 infection in infiltrating adenocarcinoma of the cervix: PCR analysis of 138 cases and correlation with histologic type and grade. Am J Clin Pathol 106:52–56

    Article  CAS  PubMed  Google Scholar 

  31. Uchiyama M, Iwasaka T, Matsuo N, Hachisuga T, Mori M, Sugimori H (1997) Correlation between human papillomavirus positivity and p53 gene overexpression in adenocarcinoma of the uterine cervix. Gynecol Oncol 65:23–29

    Article  CAS  PubMed  Google Scholar 

  32. Banister CE, Liu C, Pirisi L, Creek KE, Buckhaults PJ (2017) Identification and characterization of HPV-independent cervical cancers. Oncotarget 8:13375–13386

    Article  PubMed  PubMed Central  Google Scholar 

  33. Riou G, Favre M, Jeannel D, Bourhis J, Le Doussal V, Orth G (1990) Association between poor prognosis in early-stage invasive cervical carcinomas and non-detection of HPV DNA. Lancet 335:1171–1174

    Article  CAS  PubMed  Google Scholar 

  34. DeBritton RC, Hildesheim A, De Lao SL, Brinton LA, Sathya P, Reeves WC (1993) Human papillomaviruses and other influences on survival from cervical cancer in Panama. Obstet Gynecol 81:19–24

    CAS  PubMed  Google Scholar 

  35. Omori M, Hashi A, Kondo T, Katoh R, Hirata S (2015) Dysregulation of CDK inhibitors and p53 in HPV-negative endocervical adenocarcinoma. Int J Gynecol Pathol 34:196–203

    Article  CAS  PubMed  Google Scholar 

  36. Lindel K, Burri P, Studer HU, Altermatt HJ, Greiner RH, Gruber G (2005) Human papillomavirus status in advanced cervical cancer: predictive and prognostic significance for curative radiation treatment. Int J Gynecol 15:278–284

    Article  CAS  Google Scholar 

  37. Harima Y, Sawada S, Nagata K, Sougawa M, Ohnishi T (2002) Human papilloma virus (HPV) DNA associated with prognosis of cervical cancer after radiotherapy. Int J Radiat Oncol Biol Phys 52:1345–1351

    Article  CAS  PubMed  Google Scholar 

  38. Li P, Tan Y, Zhu LX et al (2017) Prognostic value of HPV DNA status in cervical cancer before treatment: a systematic review and meta-analysis. Oncotarget 8:66352–66359

    Article  PubMed  PubMed Central  Google Scholar 

  39. Herrington CS (1999) Do HPV-negative cervical carcinomas exist?–revisited. J Pathol 189:1–3

    Article  CAS  PubMed  Google Scholar 

  40. Shi Z, Wei D, Wu H et al (2019) Long non-coding RNA snaR is involved in the metastasis of liver cancer possibly through TGF-beta1. Oncol Lett 17:5565–5571

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Stribling D, Lei Y, Guardia CM et al (2021) A noncanonical microRNA derived from the snaR-A noncoding RNA targets a metastasis inhibitor. RNA 27:694–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liang K, Yang Y, Zha D, Yue B, Qiu J, Zhang C (2018) Overexpression of lncRNA snaR is correlated with progression and predicts poor survival of laryngeal squamous cell carcinoma. J Cell Biochem. https://doi.org/10.1002/jcb.28136

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zheng Z, Gao Y (2018) Down-regulation of lncRNA snaR is correlated with postoperative distant recurrence of HPV-negative cervical squamous cell carcinoma. Biosci Rep. https://doi.org/10.1042/BSR20181213

  44. Liang WC, Ren JL, Wong CW et al (2018) LncRNA-NEF antagonized epithelial to mesenchymal transition and cancer metastasis via cis-regulating FOXA2 and inactivating Wnt/beta-catenin signaling. Oncogene 37:1445–1456

    Article  CAS  PubMed  Google Scholar 

  45. Ju W, Luo X, Zhang N (2019) LncRNA NEF inhibits migration and invasion of HPV-negative cervical squamous cell carcinoma by inhibiting TGF-beta pathway. Biosci Rep 39:4

    Article  Google Scholar 

  46. Luo L, Wang M, Li X et al (2020) Long non-coding RNA LOC285194 in cancer. Clin Chim Acta 502:1–8

    Article  CAS  PubMed  Google Scholar 

  47. Li N, Shi K, Li W (2018) TUSC7: a novel tumor suppressor long non-coding RNA in human cancers. J Cell Physiol 233:6401–6407

    Article  CAS  PubMed  Google Scholar 

  48. Wang J, Zhang Y, Lin R et al (2019) Long noncoding RNA loc285194 expression in human papillomavirus-positive and -negative cervical squamous cell carcinoma, C33A, and SiHa cells and transforming growth factor-beta1. Med Sci Monit 25:9012–9018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gu X, Zheng Q, Chu Q, Zhu H (2021) HAND2-AS1: A functional cancer-related long non-coding RNA. Biomed Pharmacother 137:111317

    Article  CAS  PubMed  Google Scholar 

  50. Jin L, Ji J, Shi L, Jin S, Pei L (2019) lncRNA HAND2-AS1 inhibits cancer cell proliferation, migration and invasion by downregulating ROCK1 in HPV-positive and negative cervical squamous cell carcinoma. Exp Ther Med 18:2512–2518

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen S, Wang J (2019) HAND2-AS1 inhibits invasion and metastasis of cervical cancer cells via microRNA-330-5p-mediated LDOC1. Cancer Cell Int 19:353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gong J, Fan H, Deng J, Zhang Q (2020) LncRNA HAND2-AS1 represses cervical cancer progression by interaction with transcription factor E2F4 at the promoter of C16orf74. J Cell Mol Med 24:6015–6027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tian Y, Yu M, Sun L et al (2019) Long noncoding RNA00887 reduces the invasion and metastasis of nonsmall cell lung cancer by causing the degradation of miRNAs. Oncol Rep 42:1173–1182

    CAS  PubMed  Google Scholar 

  54. Fang X, Zhong G, Wang Y, Lin Z, Lin R, Yao T (2020) Low GAS5 expression may predict poor survival and cisplatin resistance in cervical cancer. Cell Death Dis 11:531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yao T, Lu R, Zhang J et al (2019) Growth arrest-specific 5 attenuates cisplatin-induced apoptosis in cervical cancer by regulating STAT3 signaling via miR-21. J Cell Physiol 234:9605–9615

    Article  CAS  PubMed  Google Scholar 

  56. Yan Z, Ruoyu L, Xing L et al (2020) Long non-coding RNA GAS5 regulates the growth and metastasis of human cervical cancer cells via induction of apoptosis and cell cycle arrest. Arch Biochem Biophys 684:108320

    Article  CAS  PubMed  Google Scholar 

  57. Xia H, Huang Z, Liu S et al (2021) LncRNA DiGeorge syndrome critical region gene 5: a crucial regulator in malignant tumors. Biomed Pharmacother 141:111889

    Article  CAS  PubMed  Google Scholar 

  58. Zhong GX, Luo D, Fan YJ et al (2021) LncRNA DGCR5 isoform-1 silencing suppresses the malignant phenotype of clear cell renal cell carcinoma via miR-211-5p/snail signal axis. Front Cell Dev Biol 9:700029

    Article  PubMed  PubMed Central  Google Scholar 

  59. Liu Y, Chang Y, Lu S, Xiang YY (2019) Downregulation of long noncoding RNA DGCR5 contributes to the proliferation, migration, and invasion of cervical cancer by activating Wnt signaling pathway. J Cell Physiol 234:11662–11669

    Article  CAS  PubMed  Google Scholar 

  60. Zhang J, Zhou M, Zhao X, Wang G, Li J (2020) Long noncoding RNA LINC00173 is downregulated in cervical cancer and inhibits cell proliferation and invasion by modulating the miR-182-5p/FBXW7 axis. Pathol Res Pract 216:152994

    Article  CAS  PubMed  Google Scholar 

  61. Tong R, Zhang J, Wang C, Li X, Yu T, Wang L (2020) LncRNA PTCSC3 inhibits the proliferation, invasion and migration of cervical cancer cells via sponging miR-574-5p. Clin Exp Pharmacol Physiol 47:439–448

    Article  CAS  PubMed  Google Scholar 

  62. Kai-Xin L, Cheng C, Rui L, Zheng-Wei S, Wen-Wen T, Peng X (2021) Roles of lncRNA MAGI2-AS3 in human cancers. Biomed Pharmacother 141:111812

    Article  PubMed  CAS  Google Scholar 

  63. Hou A, Zhang Y, Fan Y, Zheng Y, Zhou X, Liu H (2020) LncRNA MAGI2-AS3 affects cell invasion and migration of cervical squamous cell carcinoma (CSCC) via sponging miRNA-233/EPB41L3 axis. Cancer Manag Res 12:4209–4216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu Q, Liu S, Wang X, Zhang J, Liu K (2019) LncRNA MAGI2-AS3 is involved in cervical squamous cell carcinoma development through CDK6 up-regulation. Infect Agent Cancer 14:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Radwan AF, Shaker OG, El-Boghdady NA, Senousy MA (2021) Association of MALAT1 and PVT1 variants, expression profiles and target miRNA-101 and miRNA-186 with colorectal cancer: correlation with epithelial-mesenchymal transition. Int J Mol Sci. https://doi.org/10.3390/ijms22116147

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cong R, Kong F, Ma J, Li Q, Yang H, Ma X (2021) The PVT1/miR-612/CENP-H/CDK1 axis promotes malignant progression of advanced endometrial cancer. Am J Cancer Res 11:1480–1502

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Levine F, Ogunwobi OO (2021) Targeting PVT1 exon 9 Re-expresses claudin 4 protein and inhibits migration by claudin-low triple negative breast cancer cells. Cancers. https://doi.org/10.3390/cancers13051046

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wang X, Wang G, Zhang L, Cong J, Hou J, Liu C (2018) LncRNA PVT1 promotes the growth of HPV positive and negative cervical squamous cell carcinoma by inhibiting TGF-beta1. Cancer Cell Int 18:70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Liang T, Wang Y, Jiao Y et al (2021) LncRNA MALAT1 accelerates cervical carcinoma proliferation by suppressing miR-124 expression in cervical tumor cells. J Oncol 2021:8836078

    PubMed  PubMed Central  Google Scholar 

  70. Wang N, Hou MS, Zhan Y, Shen XB, Xue HY (2018) MALAT1 promotes cisplatin resistance in cervical cancer by activating the PI3K/AKT pathway. Eur Rev Med Pharmacol Sci 22:7653–7659

    CAS  PubMed  Google Scholar 

  71. Hou T, Zhang W, Tong C et al (2015) Putative stem cell markers in cervical squamous cell carcinoma are correlated with poor clinical outcome. BMC Cancer 15:785

    Article  PubMed  PubMed Central  Google Scholar 

  72. Shahryari A, Rafiee MR, Fouani Y et al (2014) Two novel splice variants of SOX2OT, SOX2OT-S1, and SOX2OT-S2 are coupregulated with SOX2 and OCT4 in esophageal squamous cell carcinoma. Stem Cells 32:126–134

    Article  CAS  PubMed  Google Scholar 

  73. Chang X, Zhang H, Yang Q, Pang L (2020) LncRNA SOX2OT affects cervical cancer cell growth, migration and invasion by regulating SOX2. Cell Cycle 19:1391–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gang X, Yuan M, Zhang J (2020) Long Non-Coding RNA TMPO-AS1 promotes cervical cancer cell proliferation, migration, and invasion by regulating miR-143-3p/ZEB1 Axis. Cancer Manag Res 12:1587–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lai Y, Zhou B, Tan Q, Xu J, Wan T, Zhang L (2020) LINC00116 enhances cervical cancer tumorigenesis through miR-106a/c-Jun pathway. J Cell Biochem 121:2247–2257

    Article  CAS  PubMed  Google Scholar 

  76. Brown CJ, Ballabio A, Rupert JL et al (1991) A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349:38–44

    Article  CAS  PubMed  Google Scholar 

  77. Chen X, Xiong D, Ye L et al (2019) Up-regulated lncRNA XIST contributes to progression of cervical cancer via regulating miR-140-5p and ORC1. Cancer Cell Int 19:45

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zou K, Yu H, Chen X, Ma Q, Hou L (2019) Silencing long noncoding RNA OGFRP1 inhibits the proliferation and migration of cervical carcinoma cells. Cell Biochem Funct 37:591–597

    Article  CAS  PubMed  Google Scholar 

  79. Shan D, Shang Y, Hu T (2018) Long noncoding RNA BLACAT1 promotes cell proliferation and invasion in human cervical cancer. Oncol Lett 15:3490–3495

    PubMed  PubMed Central  Google Scholar 

  80. Liu Y, Yang Y, Li L et al (2018) LncRNA SNHG1 enhances cell proliferation, migration, and invasion in cervical cancer. Biochem Cell Biol 96:38–43

    Article  CAS  PubMed  Google Scholar 

  81. Cheng R, Li N, Yang S, Liu L, Han S (2018) Long non-coding RNA ZEB1-AS1 promotes cell invasion and epithelial to mesenchymal transition through inducing ZEB1 expression in cervical cancer. Onco Targets Ther 11:7245–7253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Meng Y, Li Q, Li L, Ma R (2017) The long non-coding RNA CRNDE promotes cervical cancer cell growth and metastasis. Biol Chem 399:93–100

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

This work was supported by grants from Natural Science Foundation of Zhejiang Province (Grant No. LY21H160060). The sponsor was not involved in the collection, analysis, and interpretation of data or in the writing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

YL wrote this manuscript. HL and BS searched the literature. HL and SP prepared the figures and tables. ZW was critically involved in discussion. XZ wrote and edited this manuscript. All authors approved the final version.

Corresponding authors

Correspondence to Zhi-wei Wang or Xueqiong Zhu.

Ethics declarations

Competing interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, H., Sheng, B. et al. The functions of lncRNAs in the HPV-negative cervical cancer compared with HPV-positive cervical cancer. Apoptosis 27, 685–696 (2022). https://doi.org/10.1007/s10495-022-01761-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01761-w

Keywords

Navigation