Skip to main content

Advertisement

Log in

The regulation of necroptosis by ubiquitylation

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Necroptosis is a programmed necrosis that is mediated by receptor-interacting protein kinases RIPK1, RIPK3 and the mixed lineage kinase domain-like protein, MLKL. Necroptosis must be strictly regulated to maintain normal tissue homeostasis, and dysregulation of necroptosis leads to the development of various inflammatory, infectious, and degenerative diseases. Ubiquitylation is a widespread post-translational modification that is essential for balancing numerous physiological processes. Over the past decade, considerable progress has been made in the understanding of the role of ubiquitylation in regulating necroptosis. Here, we will discuss the regulatory functions of ubiquitylation in necroptosis signaling pathway. An enhanced understanding of the ubiquitylation enzymes and regulatory proteins in necroptotic signaling pathway will be exploited for the development of new therapeutic strategies for necroptosis-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

PCD:

Programmed cell death

DAMPs:

Damage-associated molecular patterns

Ub:

Ubiquitin

RIPK1:

Receptor-interacting protein kinase 1

RIPK3:

Receptor-interacting protein kinase 3

MLKL:

Mixed lineage kinase domain-like protein

TLR:

Toll-like receptor

TNFR1:

Tumor necrosis factor receptor type I

TRADD:

TNFR1-associated death domain protein

TRAF2:

TNF receptor-associated factor 2

cIAP:

Cellular inhibitor of apoptosis

FADD:

Fas-associated protein with death domain

CYLD:

Cylindromatosis

RHIMs:

RIP homotypic interaction motifs

ZBP1/DAI/DLM-1:

Z-DNA binding protein 1

ORAS:

OTULIN-related autoinflammatory syndrome

References

  1. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11(10):700–714. https://doi.org/10.1038/nrm2970

    Article  CAS  PubMed  Google Scholar 

  2. Cai Z, Liu ZG (2014) Execution of RIPK3-regulated necrosis. Mol Cell Oncol 1(2):e960759. https://doi.org/10.4161/23723548.2014.960759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wallach D, Kang TB, Dillon CP, Green DR (2016) Programmed necrosis in inflammation: toward identification of the effector molecules. Science (New York, NY) 352(6281):aaf2154. https://doi.org/10.1126/science.aaf2154

    Article  CAS  Google Scholar 

  4. Galluzzi L, Kepp O, Chan FK, Kroemer G (2017) Necroptosis: mechanisms and relevance to disease. Annu Rev Pathol 12:103–130. https://doi.org/10.1146/annurev-pathol-052016-100247

    Article  CAS  PubMed  Google Scholar 

  5. He S, Liang Y, Shao F, Wang X (2011) Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc Natl Acad Sci USA 108(50):20054–20059. https://doi.org/10.1073/pnas.1116302108

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, Sehon CA, Marquis RW, Bertin J, Mocarski ES (2013) Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem 288(43):31268–31279. https://doi.org/10.1074/jbc.M113.462341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McComb S, Cessford E, Alturki NA, Joseph J, Shutinoski B, Startek JB, Gamero AM, Mossman KL, Sad S (2014) Type-I interferon signaling through ISGF3 complex is required for sustained Rip3 activation and necroptosis in macrophages. Proc Natl Acad Sci USA 111(31):E3206-3213. https://doi.org/10.1073/pnas.1407068111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Van Herreweghe F, Festjens N, Declercq W, Vandenabeele P (2010) Tumor necrosis factor-mediated cell death: to break or to burst, that’s the question. Cell Mol Life Sci 67(10):1567–1579. https://doi.org/10.1007/s00018-010-0283-0

    Article  CAS  PubMed  Google Scholar 

  9. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137(6):1112–1123. https://doi.org/10.1016/j.cell.2009.05.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137(6):1100–1111. https://doi.org/10.1016/j.cell.2009.05.021

    Article  CAS  PubMed  Google Scholar 

  11. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X, Wang X (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148(1–2):213–227. https://doi.org/10.1016/j.cell.2011.11.031

    Article  CAS  PubMed  Google Scholar 

  12. Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science (New York, NY) 325(5938):332–336. https://doi.org/10.1126/science.1172308

    Article  CAS  Google Scholar 

  13. Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J, Liu ZG (2012) Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci USA 109(14):5322–5327. https://doi.org/10.1073/pnas.1200012109

    Article  PubMed  PubMed Central  Google Scholar 

  14. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B, Tschopp J (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1(6):489–495. https://doi.org/10.1038/82732

    Article  CAS  PubMed  Google Scholar 

  15. Weinlich R, Oberst A, Beere HM, Green DR (2017) Necroptosis in development, inflammation and disease. Nat Rev Mol Cell Biol 18(2):127–136. https://doi.org/10.1038/nrm.2016.149

    Article  CAS  PubMed  Google Scholar 

  16. Yuan J, Amin P, Ofengeim D (2019) Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci 20(1):19–33. https://doi.org/10.1038/s41583-018-0093-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pasparakis M, Vandenabeele P (2015) Necroptosis and its role in inflammation. Nature 517(7534):311–320. https://doi.org/10.1038/nature14191

    Article  CAS  PubMed  Google Scholar 

  18. Meng Y, Sandow JJ, Czabotar PE, Murphy JM (2021) The regulation of necroptosis by post-translational modifications. Cell Death Differ 28(3):861–883. https://doi.org/10.1038/s41418-020-00722-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229. https://doi.org/10.1146/annurev-biochem-060310-170328

    Article  CAS  PubMed  Google Scholar 

  20. Shmueli A, Oren M (2005) Life, death, and ubiquitin: taming the mule. Cell 121(7):963–965. https://doi.org/10.1016/j.cell.2005.06.018

    Article  CAS  PubMed  Google Scholar 

  21. Mevissen TET, Komander D (2017) Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem 86:159–192. https://doi.org/10.1146/annurev-biochem-061516-044916

    Article  CAS  PubMed  Google Scholar 

  22. Swatek KN, Komander D (2016) Ubiquitin modifications. Cell Res 26(4):399–422. https://doi.org/10.1038/cr.2016.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Feltham R, Silke J (2017) The small molecule that packs a punch: ubiquitin-mediated regulation of RIPK1/FADD/caspase-8 complexes. Cell Death Differ 24(7):1196–1204. https://doi.org/10.1038/cdd.2017.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yau R, Rape M (2016) The increasing complexity of the ubiquitin code. Nat Cell Biol 18(6):579–586. https://doi.org/10.1038/ncb3358

    Article  CAS  PubMed  Google Scholar 

  25. Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, Haas TL, Webb AI, Rickard JA, Anderton H, Wong WW, Nachbur U, Gangoda L, Warnken U, Purcell AW, Silke J, Walczak H (2011) Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471(7340):591–596. https://doi.org/10.1038/nature09816

    Article  CAS  PubMed  Google Scholar 

  26. Chen G, Goeddel DV (2002) TNF-R1 signaling: a beautiful pathway. Science (New York, NY) 296(5573):1634–1635. https://doi.org/10.1126/science.1071924

    Article  CAS  Google Scholar 

  27. Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114(2):181–190. https://doi.org/10.1016/s0092-8674(03)00521-x

    Article  CAS  PubMed  Google Scholar 

  28. Moquin DM, McQuade T, Chan FK (2013) CYLD deubiquitinates RIP1 in the TNFα-induced necrosome to facilitate kinase activation and programmed necrosis. PLoS ONE 8(10):e76841. https://doi.org/10.1371/journal.pone.0076841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Newton K, Wickliffe KE, Dugger DL, Maltzman A, Roose-Girma M, Dohse M, Kőműves L, Webster JD, Dixit VM (2019) Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature 574(7778):428–431. https://doi.org/10.1038/s41586-019-1548-x

    Article  CAS  PubMed  Google Scholar 

  30. Feng S, Yang Y, Mei Y, Ma L, Zhu DE, Hoti N, Castanares M, Wu M (2007) Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal 19(10):2056–2067. https://doi.org/10.1016/j.cellsig.2007.05.016

    Article  CAS  PubMed  Google Scholar 

  31. Cai Z, Jitkaew S, Zhao J, Chiang HC, Choksi S, Liu J, Ward Y, Wu LG, Liu ZG (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16(1):55–65. https://doi.org/10.1038/ncb2883

    Article  CAS  PubMed  Google Scholar 

  32. Chen X, Li W, Ren J, Huang D, He WT, Song Y, Yang C, Li W, Zheng X, Chen P, Han J (2014) Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res 24(1):105–121. https://doi.org/10.1038/cr.2013.171

    Article  CAS  PubMed  Google Scholar 

  33. Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A, Bruggeman I, Hulpiau P, Weber K, Sehon CA, Marquis RW, Bertin J, Gough PJ, Savvides S, Martinou JC, Bertrand MJ, Vandenabeele P (2014) MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep 7(4):971–981. https://doi.org/10.1016/j.celrep.2014.04.026

    Article  CAS  PubMed  Google Scholar 

  34. Hildebrand JM, Tanzer MC, Lucet IS, Young SN, Spall SK, Sharma P, Pierotti C, Garnier JM, Dobson RC, Webb AI, Tripaydonis A, Babon JJ, Mulcair MD, Scanlon MJ, Alexander WS, Wilks AF, Czabotar PE, Lessene G, Murphy JM, Silke J (2014) Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc Natl Acad Sci USA 111(42):15072–15077. https://doi.org/10.1073/pnas.1408987111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF, Wang FS, Wang X (2014) Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell 54(1):133–146. https://doi.org/10.1016/j.molcel.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  36. Geserick P, Hupe M, Moulin M, Wong WW, Feoktistova M, Kellert B, Gollnick H, Silke J, Leverkus M (2009) Cellular IAPs inhibit a cryptic CD95-induced cell death by limiting RIP1 kinase recruitment. J Cell Biol 187(7):1037–1054. https://doi.org/10.1083/jcb.200904158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jouan-Lanhouet S, Arshad MI, Piquet-Pellorce C, Martin-Chouly C, Le Moigne-Muller G, Van Herreweghe F, Takahashi N, Sergent O, Lagadic-Gossmann D, Vandenabeele P, Samson M, Dimanche-Boitrel MT (2012) TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death Differ 19(12):2003–2014. https://doi.org/10.1038/cdd.2012.90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Meurette O, Huc L, Rebillard A, Le Moigne G, Lagadic-Gossmann D, Dimanche-Boitrel MT (2005) TRAIL (TNF-related apoptosis-inducing ligand) induces necrosis-like cell death in tumor cells at acidic extracellular pH. Ann N Y Acad Sci 1056:379–387. https://doi.org/10.1196/annals.1352.018

    Article  CAS  PubMed  Google Scholar 

  39. Meurette O, Rebillard A, Huc L, Le Moigne G, Merino D, Micheau O, Lagadic-Gossmann D, Dimanche-Boitrel MT (2007) TRAIL induces receptor-interacting protein 1-dependent and caspase-dependent necrosis-like cell death under acidic extracellular conditions. Cancer Res 67(1):218–226. https://doi.org/10.1158/0008-5472.Can-06-1610

    Article  CAS  PubMed  Google Scholar 

  40. Kuriakose T, Kanneganti TD (2018) ZBP1: innate sensor regulating cell death and inflammation. Trends Immunol 39(2):123–134. https://doi.org/10.1016/j.it.2017.11.002

    Article  CAS  PubMed  Google Scholar 

  41. Malireddi RKS, Kesavardhana S, Kanneganti TD (2019) ZBP1 and TAK1: master regulators of NLRP3 inflammasome/pyroptosis, apoptosis, and necroptosis (PAN-optosis). Front Cell Infect Microbiol 9:406. https://doi.org/10.3389/fcimb.2019.00406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jiao H, Wachsmuth L, Kumari S, Schwarzer R, Lin J, Eren RO, Fisher A, Lane R, Young GR, Kassiotis G, Kaiser WJ, Pasparakis M (2020) Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation. Nature 580(7803):391–395. https://doi.org/10.1038/s41586-020-2129-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zheng M, Karki R, Vogel P, Kanneganti TD (2020) Caspase-6 is a key regulator of innate immunity, inflammasome activation, and host defense. Cell 181(3):674–687.e613. https://doi.org/10.1016/j.cell.2020.03.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang T, Yin C, Boyd DF, Quarato G, Ingram JP, Shubina M, Ragan KB, Ishizuka T, Crawford JC, Tummers B, Rodriguez DA, Xue J, Peri S, Kaiser WJ, Lopez CB, Xu Y, Upton JW, Thomas PG, Green DR, Balachandran S (2020) Influenza virus Z-RNAs induce ZBP1-mediated necroptosis. Cell 180(6):1115–1129.e1113. https://doi.org/10.1016/j.cell.2020.02.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lin J, Kumari S, Kim C, Van TM, Wachsmuth L, Polykratis A, Pasparakis M (2016) RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. Nature 540(7631):124–128. https://doi.org/10.1038/nature20558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Newton K, Wickliffe KE, Maltzman A, Dugger DL, Strasser A, Pham VC, Lill JR, Roose-Girma M, Warming S, Solon M, Ngu H, Webster JD, Dixit VM (2016) RIPK1 inhibits ZBP1-driven necroptosis during development. Nature 540(7631):129–133. https://doi.org/10.1038/nature20559

    Article  CAS  PubMed  Google Scholar 

  47. Peltzer N, Darding M, Walczak H (2016) Holding RIPK1 on the ubiquitin leash in TNFR1 signaling. Trends Cell Biol 26(6):445–461. https://doi.org/10.1016/j.tcb.2016.01.006

    Article  CAS  PubMed  Google Scholar 

  48. Haas TL, Emmerich CH, Gerlach B, Schmukle AC, Cordier SM, Rieser E, Feltham R, Vince J, Warnken U, Wenger T, Koschny R, Komander D, Silke J, Walczak H (2009) Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol Cell 36(5):831–844. https://doi.org/10.1016/j.molcel.2009.10.013

    Article  CAS  PubMed  Google Scholar 

  49. Li H, Kobayashi M, Blonska M, You Y, Lin X (2006) Ubiquitination of RIP is required for tumor necrosis factor alpha-induced NF-kappaB activation. J Biol Chem 281(19):13636–13643. https://doi.org/10.1074/jbc.M600620200

    Article  CAS  PubMed  Google Scholar 

  50. Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ (2006) Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 22(2):245–257. https://doi.org/10.1016/j.molcel.2006.03.026

    Article  CAS  PubMed  Google Scholar 

  51. Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW, Jaquith JB, Morris SJ, Barker PA (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30(6):689–700. https://doi.org/10.1016/j.molcel.2008.05.014

    Article  CAS  PubMed  Google Scholar 

  52. O’Donnell MA, Legarda-Addison D, Skountzos P, Yeh WC, Ting AT (2007) Ubiquitination of RIP1 regulates an NF-kappaB-independent cell-death switch in TNF signaling. Curr Biol 17(5):418–424. https://doi.org/10.1016/j.cub.2007.01.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kist M, Kőműves LG, Goncharov T, Dugger DL, Yu C, Roose-Girma M, Newton K, Webster JD, Vucic D (2021) Impaired RIPK1 ubiquitination sensitizes mice to TNF toxicity and inflammatory cell death. Cell Death Differ 28(3):985–1000. https://doi.org/10.1038/s41418-020-00629-3

    Article  CAS  PubMed  Google Scholar 

  54. Tang Y, Tu H, Zhang J, Zhao X, Wang Y, Qin J, Lin X (2019) K63-linked ubiquitination regulates RIPK1 kinase activity to prevent cell death during embryogenesis and inflammation. Nat Commun 10(1):4157. https://doi.org/10.1038/s41467-019-12033-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang X, Zhang H, Xu C, Li X, Li M, Wu X, Pu W, Zhou B, Wang H, Li D, Ding Q, Ying H, Wang H, Zhang H (2019) Ubiquitination of RIPK1 suppresses programmed cell death by regulating RIPK1 kinase activation during embryogenesis. Nat Commun 10(1):4158. https://doi.org/10.1038/s41467-019-11839-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dynek JN, Goncharov T, Dueber EC, Fedorova AV, Izrael-Tomasevic A, Phu L, Helgason E, Fairbrother WJ, Deshayes K, Kirkpatrick DS, Vucic D (2010) c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J 29(24):4198–4209. https://doi.org/10.1038/emboj.2010.300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Paul A, Wang B (2017) RNF8- and Ube2S-dependent ubiquitin lysine 11-linkage modification in response to DNA damage. Mol Cell 66(4):458-472.e455. https://doi.org/10.1016/j.molcel.2017.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Seo J, Lee EW, Sung H, Seong D, Dondelinger Y, Shin J, Jeong M, Lee HK, Kim JH, Han SY, Lee C, Seong JK, Vandenabeele P, Song J (2016) CHIP controls necroptosis through ubiquitylation- and lysosome-dependent degradation of RIPK3. Nat Cell Biol 18(3):291–302. https://doi.org/10.1038/ncb3314

    Article  CAS  PubMed  Google Scholar 

  59. Seo J, Lee EW, Song J (2016) New role of E3 ubiquitin ligase in the regulation of necroptosis. BMB Rep 49(5):247–248. https://doi.org/10.5483/bmbrep.2016.49.5.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mollah S, Wertz IE, Phung Q, Arnott D, Dixit VM, Lill JR (2007) Targeted mass spectrometric strategy for global mapping of ubiquitination on proteins. Rapid Commun Mass Spectrom 21(20):3357–3364. https://doi.org/10.1002/rcm.3227

    Article  CAS  PubMed  Google Scholar 

  61. Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 44(2):325–340. https://doi.org/10.1016/j.molcel.2011.08.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sahara N, Murayama M, Mizoroki T, Urushitani M, Imai Y, Takahashi R, Murata S, Tanaka K, Takashima A (2005) In vivo evidence of CHIP up-regulation attenuating tau aggregation. J Neurochem 94(5):1254–1263. https://doi.org/10.1111/j.1471-4159.2005.03272.x

    Article  CAS  PubMed  Google Scholar 

  63. Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, Kamei K, Nakagawa T, Kato M, Murata S, Yamaoka S, Yamamoto M, Akira S, Takao T, Tanaka K, Iwai K (2009) Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol 11(2):123–132. https://doi.org/10.1038/ncb1821

    Article  CAS  PubMed  Google Scholar 

  64. Tokunaga F, Nakagawa T, Nakahara M, Saeki Y, Taniguchi M, Sakata S, Tanaka K, Nakano H, Iwai K (2011) SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex. Nature 471(7340):633–636. https://doi.org/10.1038/nature09815

    Article  CAS  PubMed  Google Scholar 

  65. Ikeda F, Deribe YL, Skånland SS, Stieglitz B, Grabbe C, Franz-Wachtel M, van Wijk SJ, Goswami P, Nagy V, Terzic J, Tokunaga F, Androulidaki A, Nakagawa T, Pasparakis M, Iwai K, Sundberg JP, Schaefer L, Rittinger K, Macek B, Dikic I (2011) SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature 471(7340):637–641. https://doi.org/10.1038/nature09814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Damgaard RB, Nachbur U, Yabal M, Wong WW, Fiil BK, Kastirr M, Rieser E, Rickard JA, Bankovacki A, Peschel C, Ruland J, Bekker-Jensen S, Mailand N, Kaufmann T, Strasser A, Walczak H, Silke J, Jost PJ, Gyrd-Hansen M (2012) The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity. Mol Cell 46(6):746–758. https://doi.org/10.1016/j.molcel.2012.04.014

    Article  CAS  PubMed  Google Scholar 

  67. Peltzer N, Rieser E, Taraborrelli L, Draber P, Darding M, Pernaute B, Shimizu Y, Sarr A, Draberova H, Montinaro A, Martinez-Barbera JP, Silke J, Rodriguez TA, Walczak H (2014) HOIP deficiency causes embryonic lethality by aberrant TNFR1-mediated endothelial cell death. Cell Rep 9(1):153–165. https://doi.org/10.1016/j.celrep.2014.08.066

    Article  CAS  PubMed  Google Scholar 

  68. Peltzer N, Darding M, Montinaro A, Draber P, Draberova H, Kupka S, Rieser E, Fisher A, Hutchinson C, Taraborrelli L, Hartwig T, Lafont E, Haas TL, Shimizu Y, Böiers C, Sarr A, Rickard J, Alvarez-Diaz S, Ashworth MT, Beal A, Enver T, Bertin J, Kaiser W, Strasser A, Silke J, Bouillet P, Walczak H (2018) LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature 557(7703):112–117. https://doi.org/10.1038/s41586-018-0064-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kumari S, Redouane Y, Lopez-Mosqueda J, Shiraishi R, Romanowska M, Lutzmayer S, Kuiper J, Martinez C, Dikic I, Pasparakis M, Ikeda F (2014) Sharpin prevents skin inflammation by inhibiting TNFR1-induced keratinocyte apoptosis. Elife. https://doi.org/10.7554/eLife.03422

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rickard JA, Anderton H, Etemadi N, Nachbur U, Darding M, Peltzer N, Lalaoui N, Lawlor KE, Vanyai H, Hall C, Bankovacki A, Gangoda L, Wong WW, Corbin J, Huang C, Mocarski ES, Murphy JM, Alexander WS, Voss AK, Vaux DL, Kaiser WJ, Walczak H, Silke J (2014) TNFR1-dependent cell death drives inflammation in Sharpin-deficient mice. Elife. https://doi.org/10.7554/eLife.03464

    Article  PubMed  PubMed Central  Google Scholar 

  71. Aksentijevich I, Zhou Q (2017) NF-κB pathway in autoinflammatory diseases: dysregulation of protein modifications by ubiquitin defines a new category of autoinflammatory diseases. Front Immunol 8:399. https://doi.org/10.3389/fimmu.2017.00399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang H, Meng H, Li X, Zhu K, Dong K, Mookhtiar AK, Wei H, Li Y, Sun SC, Yuan J (2017) PELI1 functions as a dual modulator of necroptosis and apoptosis by regulating ubiquitination of RIPK1 and mRNA levels of c-FLIP. Proc Natl Acad Sci USA 114(45):11944–11949. https://doi.org/10.1073/pnas.1715742114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. de Almagro MC, Goncharov T, Izrael-Tomasevic A, Duttler S, Kist M, Varfolomeev E, Wu X, Lee WP, Murray J, Webster JD, Yu K, Kirkpatrick DS, Newton K, Vucic D (2017) Coordinated ubiquitination and phosphorylation of RIP1 regulates necroptotic cell death. Cell Death Differ 24(1):26–37. https://doi.org/10.1038/cdd.2016.78

    Article  CAS  PubMed  Google Scholar 

  74. Choi SW, Park HH, Kim S, Chung JM, Noh HJ, Kim SK, Song HK, Lee CW, Morgan MJ, Kang HC, Kim YS (2018) PELI1 selectively targets kinase-active RIP3 for ubiquitylation-dependent proteasomal degradation. Mol Cell 70(5):920-935.e927. https://doi.org/10.1016/j.molcel.2018.05.016

    Article  PubMed  Google Scholar 

  75. Li X, Zhang M, Huang X, Liang W, Li G, Lu X, Li Y, Pan H, Shi L, Zhu H, Qian L, Shan B, Yuan J (2020) Ubiquitination of RIPK1 regulates its activation mediated by TNFR1 and TLRs signaling in distinct manners. Nat Commun 11(1):6364. https://doi.org/10.1038/s41467-020-19935-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Draber P, Kupka S, Reichert M, Draberova H, Lafont E, de Miguel D, Spilgies L, Surinova S, Taraborrelli L, Hartwig T, Rieser E, Martino L, Rittinger K, Walczak H (2015) LUBAC-recruited CYLD and A20 regulate gene activation and cell death by exerting opposing effects on linear ubiquitin in signaling complexes. Cell Rep 13(10):2258–2272. https://doi.org/10.1016/j.celrep.2015.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Takiuchi T, Nakagawa T, Tamiya H, Fujita H, Sasaki Y, Saeki Y, Takeda H, Sawasaki T, Buchberger A, Kimura T, Iwai K (2014) Suppression of LUBAC-mediated linear ubiquitination by a specific interaction between LUBAC and the deubiquitinases CYLD and OTULIN. Genes Cells 19(3):254–272. https://doi.org/10.1111/gtc.12128

    Article  CAS  PubMed  Google Scholar 

  78. Legarda D, Justus SJ, Ang RL, Rikhi N, Li W, Moran TM, Zhang J, Mizoguchi E, Zelic M, Kelliher MA, Blander JM, Ting AT (2016) CYLD proteolysis protects macrophages from TNF-mediated auto-necroptosis induced by LPS and licensed by type I IFN. Cell Rep 15(11):2449–2461. https://doi.org/10.1016/j.celrep.2016.05.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ganjam GK, Terpolilli NA, Diemert S, Eisenbach I, Hoffmann L, Reuther C, Herden C, Roth J, Plesnila N, Culmsee C (2018) Cylindromatosis mediates neuronal cell death in vitro and in vivo. Cell Death Differ 25(8):1394–1407. https://doi.org/10.1038/s41418-017-0046-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Brummelkamp TR, Nijman SM, Dirac AM, Bernards R (2003) Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 424(6950):797–801. https://doi.org/10.1038/nature01811

    Article  CAS  PubMed  Google Scholar 

  81. Kovalenko A, Chable-Bessia C, Cantarella G, Israël A, Wallach D, Courtois G (2003) The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 424(6950):801–805. https://doi.org/10.1038/nature01802

    Article  CAS  PubMed  Google Scholar 

  82. Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G (2003) CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 424(6950):793–796. https://doi.org/10.1038/nature01803

    Article  CAS  PubMed  Google Scholar 

  83. O’Donnell MA, Perez-Jimenez E, Oberst A, Ng A, Massoumi R, Xavier R, Green DR, Ting AT (2011) Caspase 8 inhibits programmed necrosis by processing CYLD. Nat Cell Biol 13(12):1437–1442. https://doi.org/10.1038/ncb2362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schworer SA, Smirnova II, Kurbatova I, Bagina U, Churova M, Fowler T, Roy AL, Degterev A, Poltorak A (2014) Toll-like receptor-mediated down-regulation of the deubiquitinase cylindromatosis (CYLD) protects macrophages from necroptosis in wild-derived mice. J Biol Chem 289(20):14422–14433. https://doi.org/10.1074/jbc.M114.547547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Keusekotten K, Elliott PR, Glockner L, Fiil BK, Damgaard RB, Kulathu Y, Wauer T, Hospenthal MK, Gyrd-Hansen M, Krappmann D, Hofmann K, Komander D (2013) OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell 153(6):1312–1326. https://doi.org/10.1016/j.cell.2013.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Elliott PR, Nielsen SV, Marco-Casanova P, Fiil BK, Keusekotten K, Mailand N, Freund SM, Gyrd-Hansen M, Komander D (2014) Molecular basis and regulation of OTULIN-LUBAC interaction. Mol Cell 54(3):335–348. https://doi.org/10.1016/j.molcel.2014.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Schaeffer V, Akutsu M, Olma MH, Gomes LC, Kawasaki M, Dikic I (2014) Binding of OTULIN to the PUB domain of HOIP controls NF-κB signaling. Mol Cell 54(3):349–361. https://doi.org/10.1016/j.molcel.2014.03.016

    Article  CAS  PubMed  Google Scholar 

  88. Wagner SA, Satpathy S, Beli P, Choudhary C (2016) SPATA2 links CYLD to the TNF-α receptor signaling complex and modulates the receptor signaling outcomes. EMBO J 35(17):1868–1884. https://doi.org/10.15252/embj.201694300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wiener R, Wolberger C (2013) A new DUB makes linear ubiquitin a party to its own destruction. Cell 153(6):1189–1191. https://doi.org/10.1016/j.cell.2013.05.018

    Article  CAS  PubMed  Google Scholar 

  90. Rivkin E, Almeida SM, Ceccarelli DF, Juang YC, MacLean TA, Srikumar T, Huang H, Dunham WH, Fukumura R, Xie G, Gondo Y, Raught B, Gingras AC, Sicheri F, Cordes SP (2013) The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature 498(7454):318–324. https://doi.org/10.1038/nature12296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Verboom L, Martens A, Priem D, Hoste E, Sze M, Vikkula H, Van Hove L, Voet S, Roels J, Maelfait J, Bongiovanni L, de Bruin A, Scott CL, Saeys Y, Pasparakis M, Bertrand MJM, van Loo G (2020) OTULIN prevents liver inflammation and hepatocellular carcinoma by inhibiting FADD- and RIPK1 kinase-mediated hepatocyte apoptosis. Cell Rep 30(7):2237-2247.e2236. https://doi.org/10.1016/j.celrep.2020.01.028

    Article  CAS  PubMed  Google Scholar 

  92. Schünke H, Göbel U, Dikic I, Pasparakis M (2021) OTULIN inhibits RIPK1-mediated keratinocyte necroptosis to prevent skin inflammation in mice. Nat Commun 12(1):5912. https://doi.org/10.1038/s41467-021-25945-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hoste E, Lecomte K, Annusver K, Vandamme N, Roels J, Maschalidi S, Verboom L, Vikkula HK, Sze M, Van Hove L, Verstaen K, Martens A, Hochepied T, Saeys Y, Ravichandran K, Kasper M, van Loo G (2021) OTULIN maintains skin homeostasis by controlling keratinocyte death and stem cell identity. Nat Commun 12(1):5913. https://doi.org/10.1038/s41467-021-25944-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wertz IE, O’Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, Wu P, Wiesmann C, Baker R, Boone DL, Ma A, Koonin EV, Dixit VM (2004) De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430(7000):694–699. https://doi.org/10.1038/nature02794

    Article  CAS  PubMed  Google Scholar 

  95. Priem D, van Loo G, Bertrand MJM (2020) A20 and cell death-driven inflammation. Trends Immunol 41(5):421–435. https://doi.org/10.1016/j.it.2020.03.001

    Article  CAS  PubMed  Google Scholar 

  96. Tokunaga F, Nishimasu H, Ishitani R, Goto E, Noguchi T, Mio K, Kamei K, Ma A, Iwai K, Nureki O (2012) Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-κB regulation. EMBO J 31(19):3856–3870. https://doi.org/10.1038/emboj.2012.241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Verhelst K, Carpentier I, Kreike M, Meloni L, Verstrepen L, Kensche T, Dikic I, Beyaert R (2012) A20 inhibits LUBAC-mediated NF-κB activation by binding linear polyubiquitin chains via its zinc finger 7. EMBO J 31(19):3845–3855. https://doi.org/10.1038/emboj.2012.240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Polykratis A, Martens A, Eren RO, Shirasaki Y, Yamagishi M, Yamaguchi Y, Uemura S, Miura M, Holzmann B, Kollias G, Armaka M, van Loo G, Pasparakis M (2019) A20 prevents inflammasome-dependent arthritis by inhibiting macrophage necroptosis through its ZnF7 ubiquitin-binding domain. Nat Cell Biol 21(6):731–742. https://doi.org/10.1038/s41556-019-0324-3

    Article  CAS  PubMed  Google Scholar 

  99. Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, Ma A (2000) Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science (New York, NY) 289(5488):2350–2354. https://doi.org/10.1126/science.289.5488.2350

    Article  CAS  Google Scholar 

  100. Boone DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT, Tsui C, Hurley P, Chien M, Chai S, Hitotsumatsu O, McNally E, Pickart C, Ma A (2004) The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 5(10):1052–1060. https://doi.org/10.1038/ni1110

    Article  CAS  PubMed  Google Scholar 

  101. Zhou Q, Wang H, Schwartz DM, Stoffels M, Park YH, Zhang Y, Yang D, Demirkaya E, Takeuchi M, Tsai WL, Lyons JJ, Yu X, Ouyang C, Chen C, Chin DT, Zaal K, Chandrasekharappa SC, Hanson EP, Yu Z, Mullikin JC, Hasni SA, Wertz IE, Ombrello AK, Stone DL, Hoffmann P, Jones A, Barham BK, Leavis HL, van Royen-Kerkof A, Sibley C, Batu ED, Gül A, Siegel RM, Boehm M, Milner JD, Ozen S, Gadina M, Chae J, Laxer RM, Kastner DL, Aksentijevich I (2016) Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat Genet 48(1):67–73. https://doi.org/10.1038/ng.3459

    Article  CAS  PubMed  Google Scholar 

  102. Dziedzic SA, Su Z, Jean Barrett V, Najafov A, Mookhtiar AK, Amin P, Pan H, Sun L, Zhu H, Ma A, Abbott DW, Yuan J (2018) ABIN-1 regulates RIPK1 activation by linking Met1 ubiquitylation with Lys63 deubiquitylation in TNF-RSC. Nat Cell Biol 20(1):58–68. https://doi.org/10.1038/s41556-017-0003-1

    Article  CAS  PubMed  Google Scholar 

  103. Li M, Liu Y, Xu C, Zhao Q, Liu J, Xing M, Li X, Zhang H, Wu X, Wang L, Ou Y, Wu X, Zhao X, Liu H, Qiu L, Li F, Li J, Rong W, Luo Y, Deng J, Wang X, Wang Z, Zhao Y, Lv A, Li Q, Zhang H (2022) Ubiquitin-binding domain in ABIN1 is critical for regulating cell death and inflammation during development. Cell Death Differ. https://doi.org/10.1038/s41418-022-00994-1

    Article  PubMed  PubMed Central  Google Scholar 

  104. Liu X, Li Y, Peng S, Yu X, Li W, Shi F, Luo X, Tang M, Tan Z, Bode AM, Cao Y (2018) Epstein-Barr virus encoded latent membrane protein 1 suppresses necroptosis through targeting RIPK1/3 ubiquitination. Cell Death Dis 9(2):53. https://doi.org/10.1038/s41419-017-0081-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mei P, Xie F, Pan J, Wang S, Gao W, Ge R, Gao B, Gao S, Chen X, Wang Y, Wu J, Ding C, Li J (2021) E3 ligase TRIM25 ubiquitinates RIP3 to inhibit TNF induced cell necrosis. Cell Death Differ 28(10):2888–2899. https://doi.org/10.1038/s41418-021-00790-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Xie Y, Zhao Y, Shi L, Li W, Chen K, Li M, Chen X, Zhang H, Li T, Matsuzawa-Ishimoto Y, Yao X, Shao D, Ke Z, Li J, Chen Y, Zhang X, Cui J, Cui S, Leng Q, Cadwell K, Li X, Wei H, Zhang H, Li H, Xiao H (2020) Gut epithelial TSC1/mTOR controls RIPK3-dependent necroptosis in intestinal inflammation and cancer. J Clin Investig 130(4):2111–2128. https://doi.org/10.1172/jci133264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lee SB, Kim JJ, Han SA, Fan Y, Guo LS, Aziz K, Nowsheen S, Kim SS, Park SY, Luo Q, Chung JO, Choi SI, Aziz A, Yin P, Tong SY, Fiesel FC, Springer W, Zhang JS, Lou Z (2019) The AMPK-Parkin axis negatively regulates necroptosis and tumorigenesis by inhibiting the necrosome. Nat Cell Biol 21(8):940–951. https://doi.org/10.1038/s41556-019-0356-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Liu Z, Nailwal H, Rector J, Rahman MM, Sam R, McFadden G, Chan FK (2021) A class of viral inducer of degradation of the necroptosis adaptor RIPK3 regulates virus-induced inflammation. Immunity 54(2):247-258.e247. https://doi.org/10.1016/j.immuni.2020.11.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Onizawa M, Oshima S, Schulze-Topphoff U, Oses-Prieto JA, Lu T, Tavares R, Prodhomme T, Duong B, Whang MI, Advincula R, Agelidis A, Barrera J, Wu H, Burlingame A, Malynn BA, Zamvil SS, Ma A (2015) The ubiquitin-modifying enzyme A20 restricts ubiquitination of the kinase RIPK3 and protects cells from necroptosis. Nat Immunol 16(6):618–627. https://doi.org/10.1038/ni.3172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Roedig J, Kowald L, Juretschke T, Karlowitz R, Ahangarian Abhari B, Roedig H, Fulda S, Beli P, van Wijk SJ (2021) USP22 controls necroptosis by regulating receptor-interacting protein kinase 3 ubiquitination. EMBO Rep 22(2):e50163. https://doi.org/10.15252/embr.202050163

    Article  CAS  PubMed  Google Scholar 

  111. Garcia LR, Tenev T, Newman R, Haich RO, Liccardi G, John SW, Annibaldi A, Yu L, Pardo M, Young SN, Fitzgibbon C, Fernando W, Guppy N, Kim H, Liang LY, Lucet IS, Kueh A, Roxanis I, Gazinska P, Sims M, Smyth T, Ward G, Bertin J, Beal AM, Geddes B, Choudhary JS, Murphy JM, Aurelia Ball K, Upton JW, Meier P (2021) Ubiquitylation of MLKL at lysine 219 positively regulates necroptosis-induced tissue injury and pathogen clearance. Nat Commun 12(1):3364. https://doi.org/10.1038/s41467-021-23474-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu Z, Dagley LF, Shield-Artin K, Young SN, Bankovacki A, Wang X, Tang M, Howitt J, Stafford CA, Nachbur U, Fitzgibbon C, Garnish SE, Webb AI, Komander D, Murphy JM, Hildebrand JM, Silke J (2021) Oligomerization-driven MLKL ubiquitylation antagonizes necroptosis. EMBO J 40(23):e103718. https://doi.org/10.15252/embj.2019103718

    Article  CAS  PubMed  Google Scholar 

  113. Yoon S, Bogdanov K, Wallach D (2022) Site-specific ubiquitination of MLKL targets it to endosomes and targets Listeria and Yersinia to the lysosomes. Cell Death Differ 29(2):306–322. https://doi.org/10.1038/s41418-021-00924-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang JG, Alvarez-Diaz S, Lewis R, Lalaoui N, Metcalf D, Webb AI, Young SN, Varghese LN, Tannahill GM, Hatchell EC, Majewski IJ, Okamoto T, Dobson RC, Hilton DJ, Babon JJ, Nicola NA, Strasser A, Silke J, Alexander WS (2013) The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39(3):443–453. https://doi.org/10.1016/j.immuni.2013.06.018

    Article  CAS  PubMed  Google Scholar 

  115. Kesavardhana S, Kuriakose T, Guy CS, Samir P, Malireddi RKS, Mishra A, Kanneganti TD (2017) ZBP1/DAI ubiquitination and sensing of influenza vRNPs activate programmed cell death. J Exp Med 214(8):2217–2229. https://doi.org/10.1084/jem.20170550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang X, Xiong J, Zhou D, Zhang S, Wang L, Tian Q, Li C, Liu J, Wu Y, Li J, Wang J (2022) TRIM34 modulates influenza virus-activated programmed cell death by targeting Z-DNA-binding protein 1 for K63-linked polyubiquitination. J Biol Chem 298(3):101611. https://doi.org/10.1016/j.jbc.2022.101611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Key Research and Development Program of China (No. 2021YFA1302200); National Natural Science Foundation of China (No.32170748 and No.81773075); the Key Research and Development Program of Ningxia (No.2022BFH02012); Shanghai Committee of Science and Technology (No. 21490714300 and No.18410720600) and Natural Science Foundation of Shanghai (No. 22ZR1448000).

Author information

Authors and Affiliations

Authors

Contributions

ZC had the idea for the review article; YC, WR, and QW performed the literature search; ZC, YC and WR drafted the manuscript; YH and DM critically revised the manuscript.

Corresponding author

Correspondence to Zhenyu Cai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Ren, W., Wang, Q. et al. The regulation of necroptosis by ubiquitylation. Apoptosis 27, 668–684 (2022). https://doi.org/10.1007/s10495-022-01755-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01755-8

Keywords

Navigation