Skip to main content
Log in

Monitoring yeast regulated cell death: trespassing the point of no return to loss of plasma membrane integrity

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Acetic acid and hydrogen peroxide are the most common stimuli to induce apoptosis in yeast. The initial phase of this cell death process is characterized by the maintenance of plasma membrane integrity in cells that had already lost their viability. As loss of plasma membrane integrity is typically assessed by staining with propidium iodide (PI) after exposure of cells to a stimulus and cell viability is determined 48 h after plating, the percentage of cells with compromised plasma membrane integrity and c.f.u. counts often do not correlate. Herein, we developed a simple method to explore at what point after an apoptotic stimulus and plating cells do non-viable cells die as result of plasma membrane disruption, i.e., when cells surpass the point-of-no-return and undergo a secondary necrosis. The method consisted in washing cells and re-suspending them in stimulus-free medium after acetic acid and hydrogen peroxide treatments, to mimic transfer to plating, and then assessing plasma membrane integrity through PI staining. We show that, after the stimuli are removed, cells that had lost proliferative capacity but still maintained plasma membrane integrity continue the cell death process and later lose plasma membrane integrity when progressing to secondary necrosis. After exposure to hydrogen peroxide, cells undergo secondary necrosis preceded by Nhp6Ap-GFP cytosolic localization, in contrast to acetic acid exposure, where Nhp6Ap-GFP cytosolic localization mainly occurs simultaneously with an earlier emergence of secondary necrosis. In conclusion, the developed method allows monitoring the irreversible loss of plasma membrane integrity of dying apoptotic cells after the point-of-no-return is trespassed, and better characterize the process of secondary necrosis after apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The manuscript has data included as electronic supplementary material.

References

  1. Falcone C, Mazzoni C (2016) External and internal triggers of cell death in yeast. Cell Mol Life Sci 73:2237–2250. https://doi.org/10.1007/s00018-016-2197-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carmona-Gutierrez D, Eisenberg T, Büttner S et al (2010) Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ 17:763–773. https://doi.org/10.1038/cdd.2009.219

    Article  CAS  PubMed  Google Scholar 

  3. Carmona-Gutierrez D, Bauer MA, Zimmermann A et al (2018) Guidelines and recommendations on yeast cell death nomenclature. Microb Cell 5:4–31. https://doi.org/10.15698/mic2018.01.607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kroemer G, Galluzzi L, Vandenabeele P et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11. https://doi.org/10.1038/cdd.2008.150

    Article  CAS  PubMed  Google Scholar 

  5. Wloch-Salamon DM, Bem AE (2013) Types of cell death and methods of their detection in yeast Saccharomyces cerevisiae. J Appl Microbiol 114:287–298. https://doi.org/10.1111/jam.12024

    Article  CAS  PubMed  Google Scholar 

  6. Deere D, Shen J, Vesey G et al (1998) Flow cytometry and cell sorting for yeast viability assessment and cell selection. Yeast 14:147–160. https://doi.org/10.1002/(SICI)1097-0061(19980130)14:2%3c147::AID-YEA207%3e3.0.CO;2-L

    Article  CAS  PubMed  Google Scholar 

  7. Prudêncio C, Sansonetty F, Côrte-Real M (1998) Flow cytometric assessment of cell structural and functional changes induced by acetic acid in the yeasts Zygosaccharomyces bailii and Saccharomyces cerevisiae. Cytometry 31:307–313. https://doi.org/10.1002/(sici)1097-0320(19980401)31:4%3c307::aid-cyto11%3e3.0.co;2-u

    Article  PubMed  Google Scholar 

  8. Kwolek-Mirek M, Zadrag-Tecza R (2014) Comparison of methods used for assessing the viability and vitality of yeast cells. FEMS Yeast Res 14:1068–1079. https://doi.org/10.1111/1567-1364.12202

    Article  CAS  PubMed  Google Scholar 

  9. Xie M, Xu L, Zhang R et al (2021) Viable but nonculturable state of yeast Candida sp. strain LN1 induced by high phenol concentrations. Appl Environ Microbiol 87:e0111021. https://doi.org/10.1128/AEM.01110-21

    Article  PubMed  Google Scholar 

  10. Teng X, Hardwick JM (2009) Reliable method for detection of programmed cell death in yeast. Methods Mol Biol 559:335–342. https://doi.org/10.1007/978-1-60327-017-5_23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fannjiang Y, Cheng WC, Lee SJ et al (2004) Mitochondrial fission proteins regulate programmed cell death in yeast. Genes Dev 18:2785–2797. https://doi.org/10.1101/gad.1247904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Essary BD, Marshall PA (2009) Assessment of FUN-1 vital dye staining: Yeast with a block in the vacuolar sorting pathway have impaired ability to form CIVS when stained with FUN-1 fluorescent dye. J Microbiol Methods 78:208–212. https://doi.org/10.1016/j.mimet.2009.05.018

    Article  CAS  PubMed  Google Scholar 

  13. Silva MT (2010) Secondary necrosis: the natural outcome of the complete apoptotic program. FEBS Lett 584:4491–4499. https://doi.org/10.1016/j.febslet.2010.10.046

    Article  CAS  PubMed  Google Scholar 

  14. Eisenberg T, Carmona-Gutierrez D, Büttner S et al (2010) Necrosis in yeast. Apoptosis 15:257–268. https://doi.org/10.1007/s10495-009-0453-4

    Article  PubMed  Google Scholar 

  15. Eisenberg T, Knauer H, Schauer A et al (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11:1305–1314. https://doi.org/10.1038/ncb1975

    Article  CAS  PubMed  Google Scholar 

  16. Santos J, Sousa MJ, Leão C (2012) Ammonium is toxic for aging yeast cells, inducing death and shortening of the chronological lifespan. PLoS ONE 7:e37090. https://doi.org/10.1371/journal.pone.0037090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195. https://doi.org/10.1038/nature00858

    Article  CAS  PubMed  Google Scholar 

  18. Bell CW, Jiang W, Reich CF, Pisetsky DS (2006) The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol 291:C1318–C1325. https://doi.org/10.1152/ajpcell.00616.2005

    Article  CAS  PubMed  Google Scholar 

  19. Foglio E, Pellegrini L, Germani A et al (2019) HMGB1-mediated apoptosis and autophagy in ischemic heart diseases. Vasc Biol 1:H89–H96. https://doi.org/10.1530/VB-19-0013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rego A, Mendes F, Costa V et al (2020) Pkh1p-Ypk1p and Pkh1p-Sch9p pathways are activated by acetic acid to induce a mitochondrial-dependent regulated cell death. Oxid Med Cell Longev 2020:1–14. https://doi.org/10.1155/2020/7095078

    Article  CAS  Google Scholar 

  21. Rego A, Cooper KF, Snider J et al (2018) Acetic acid induces Sch9p-dependent translocation of Isc1p from the endoplasmic reticulum into mitochondria. Biochim Biophys Acta Mol Cell Biol Lipids 1863:576–583. https://doi.org/10.1016/j.bbalip.2018.02.008

    Article  CAS  PubMed  Google Scholar 

  22. Rego A, Duarte AM, Azevedo F et al (2014) Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae. Microb Cell 1:303–314. https://doi.org/10.15698/mic2014.09.164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rego A, Costa M, Chaves SR et al (2012) Modulation of mitochondrial outer membrane permeabilization and apoptosis by ceramide metabolism. PLoS ONE 7:e48571. https://doi.org/10.1371/journal.pone.0048571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Madeo F, Fröhlich E, Ligr M et al (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145:757–767. https://doi.org/10.1083/jcb.145.4.757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ludovico P, Sousa MJ, Silva MT et al (2001) Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147:2409–2415. https://doi.org/10.1099/00221287-147-9-2409

    Article  CAS  PubMed  Google Scholar 

  26. Galluzzi L, Bravo-San Pedro JM, Vitale I et al (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 22:58–73. https://doi.org/10.1038/cdd.2014.137

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of “Contrato-Programa” UIDB/04050/2020.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the main manuscript text, prepared figures and reviewed the manuscript.

Corresponding author

Correspondence to Manuela Côrte-Real.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1255 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rego, A., Ribeiro, A., Côrte-Real, M. et al. Monitoring yeast regulated cell death: trespassing the point of no return to loss of plasma membrane integrity. Apoptosis 27, 778–786 (2022). https://doi.org/10.1007/s10495-022-01748-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01748-7

Keywords

Navigation