Skip to main content

Advertisement

Log in

JNK-dependent phosphorylation and nuclear translocation of EGR-1 promotes cardiomyocyte apoptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Myocardial apoptosis induced by myocardial ischemia and hyperlipemia are the main causes of high mortality of cardiovascular diseases. It is not clear whether there is a common mechanism responsible for these two kinds of cardiomyocyte apoptosis. Previous studies demonstrated that early growth response protein 1 (EGR-1) has a pro-apoptotic effect on cardiomyocytes under various stress conditions. Here, we found that EGR-1 is also involved in cardiomyocyte apoptosis induced by both ischemia and high-fat, but how EGR-1 enters the nucleus and whether nuclear EGR-1 (nEGR-1) has a universal effect on cardiomyocyte apoptosis are still unknown. By analyzing the phosphorylation sites and nucleation information of EGR-1, we constructed different mutant plasmids to confirm that the nucleus location of EGR-1 requires Ser501 phosphorylation and regulated by JNK. Furthermore, the pro-apoptotic effect of nEGR-1 was further explored through genetic methods. The results showed that EGR-1 positively regulates the mRNA levels of apoptosis-related proteins (ATF2, CTCF, HAND2, ELK1), which may be the downstream targets of EGR-1 to promote the cardiomyocyte apoptosis. Our research announced the universal pro-apoptotic function of nEGR-1 and explored the mechanism of its nucleus location in cardiomyocytes, providing a new target for the “homotherapy for heteropathy” to cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ATF2:

Cyclic AMP-dependent transcription factor 2

CTCF:

Transcriptional repressor

EGR-1:

Early growth response protein 1

nEGR-1:

Nuclear EGR-1

ELK1:

ETS domain-containing protein 1

HAND2:

Heart- and neural crest derivatives-expressed protein 2

JNK:

Mitogen-activated protein kinase 8

MAPK:

Mitogen-activated protein kinase

NLS:

Nuclear localization signals

PA:

Palmitic acid

SD:

Serum deprivation

SPC:

Sphingosylphosphorylcholine

TF:

Transcription factor

References

  1. Ambrosy AP, Fonarow GC, Butler J, Chioncel O, Greene SJ, Vaduganathan M, Nodari S, Lam CSP, Sato N, Shah AN, Gheorghiade M (2014) The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol 63:1123–1133

    PubMed  Google Scholar 

  2. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Shay CM, Spartano NL, Stokes A, Tirschwell DL, VanWagner LB, Tsao CW (2020) Heart disease and stroke statistics-2020 update: a report from the American heart association. Circulation 141:e139–e596

    PubMed  Google Scholar 

  3. Li J, Salvador AM, Li G, Valkov N, Ziegler O, Yeri A, Yang Xiao C, Meechoovet B, Alsop E, Rodosthenous RS, Kundu P, Huan T, Levy D, Tigges J, Pico AR, Ghiran I, Silverman MG, Meng X, Kitchen R, Xu J, Van Keuren-Jensen K, Shah R, Xiao J, Das S (2021) Mir-30d regulates cardiac remodeling by intracellular and paracrine signaling. Circ Res 128:e1–e23

    CAS  PubMed  Google Scholar 

  4. Da Martins C, De Windt LJ (2012) MicroRNAs in control of cardiac hypertrophy. Cardiovasc Res 93:563–572

    Google Scholar 

  5. Uygur A, Lee RT (2016) Mechanisms of cardiac regeneration. Dev Cell 36:362–374

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Daiber A, Andreadou I, Oelze M, Davidson SM, Hausenloy DJ (2021) Discovery of new therapeutic redox targets for cardioprotection against ischemia/reperfusion injury and heart failure. Free Radical Biol Med 163:325–343

    CAS  Google Scholar 

  7. Li TT, Liu MR, Pei DS (2019) Friend or foe, the role of EGR-1 in cancer. Med Oncol 37:7

    PubMed  Google Scholar 

  8. Rayner BS, Figtree GA, Sabaretnam T, Shang P, Mazhar J, Weaver JC, Lay WN, Witting PK, Hunyor SN, Grieve SM, Khachigian LM, Bhindi R (2013) Selective inhibition of the master regulator transcription factor Egr-1 with catalytic oligonucleotides reduces myocardial injury and improves left ventricular systolic function in a preclinical model of myocardial infarction. J Am Heart Assoc 2:e000023

    PubMed  PubMed Central  Google Scholar 

  9. Florkowska M, Tymoszuk P, Balwierz A, Skucha A, Kochan J, Wawro M, Stalinska K, Kasza A (2012) EGF activates TTP expression by activation of ELK-1 and EGR-1 transcription factors. BMC Mol Biol 13:8

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang WW, Shao SL, Pan Y, Li SS (2019) [Expression of EGR1 gene and location of EGR1 protein in differentiation of bovine skeletal muscle-derived satellite cells], Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi. Chin J Appl Physiol 35:5–8

    Google Scholar 

  11. Ponti D, Bellenchi GC, Puca R, Bastianelli D, Maroder M, Ragona G, Roussel P, Thiry M, Mercola D, Calogero A (2014) The transcription factor EGR1 localizes to the nucleolus and is linked to suppression of ribosomal precursor synthesis. PLoS ONE 9:e96037

    PubMed  PubMed Central  Google Scholar 

  12. Chen J, Liu MY, Parish CR, Chong BH, Khachigian L (2011) Nuclear import of early growth response-1 involves importin-7 and the novel nuclear localization signal serine-proline-serine. Int J Biochem Cell Biol 43:905–912

    CAS  PubMed  Google Scholar 

  13. Guise AJ, Mathias RA, Rowland EA, Yu F, Cristea IM (2014) Probing phosphorylation-dependent protein interactions within functional domains of histone deacetylase 5 (HDAC5). Proteomics 14:2156–2166

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kitamura R, Sekimoto T, Ito S, Harada S, Yamagata H, Masai H, Yoneda Y, Yanagi K (2006) Nuclear import of Epstein-Barr virus nuclear antigen 1 mediated by NPI-1 (Importin alpha5) is up- and down-regulated by phosphorylation of the nuclear localization signal for which Lys379 and Arg380 are essential. J Virol 80:1979–1991

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chuderland D, Konson A, Seger R (2008) Identification and characterization of a general nuclear translocation signal in signaling proteins. Mol Cell 31:850–861

    CAS  PubMed  Google Scholar 

  16. Maik-Rachline G, Zehorai E, Hanoch T, Blenis J, Seger R (2018) The nuclear translocation of the kinases p38 and JNK promotes inflammation-induced cancer. Sci Signal 11(525):eaao3428. https://doi.org/10.1126/scisignal.aao3428

    Article  CAS  Google Scholar 

  17. Yu J, Zhang SS, Saito K, Williams S, Arimura Y, Ma Y, Ke Y, Baron V, Mercola D, Feng GS, Adamson E, Mustelin T (2009) PTEN regulation by Akt-EGR1-ARF-PTEN axis. Embo J 28:21–33

    PubMed  Google Scholar 

  18. Manente AG, Pinton G, Tavian D, Lopez-Rodas G, Brunelli E, Moro L (2011) Coordinated sumoylation and ubiquitination modulate EGF induced EGR1 expression and stability. PLoS ONE 6:e25676

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Li Y, Qi Q, Yang WC, Zhang TL, Lu CC, Yao YJ, Kong WH, Zhao J (2020) Sphingosylphosphorylcholine alleviates hypoxia-caused apoptosis in cardiac myofibroblasts via CaM/p38/STAT3 pathway. Apoptosis 25:853–863

    CAS  PubMed  Google Scholar 

  20. Aggeli IK, Beis I, Gaitanaki C (2010) ERKs and JNKs mediate hydrogen peroxide-induced Egr-1 expression and nuclear accumulation in H9c2 cells. Physiol Res 59:443–454

    CAS  PubMed  Google Scholar 

  21. Zhang Y, Liao H, Zhong S, Gao F, Chen Y, Huang Z, Lu S, Sun T, Wang B, Li W, Xu H, Zheng F, Shi G (2015) Effect of N-n-butyl haloperidol iodide on ROS/JNK/Egr-1 signaling in H9c2 cells after hypoxia/reoxygenation. Sci Rep 5:11809

    PubMed  PubMed Central  Google Scholar 

  22. Ma Y, Ma L, Ma J, Wu R, Zou Y, Ge J (2020) Hyperlipidemia inhibits the protective effect of lisinopril after myocardial infarction via activation of dendritic cells. J Cell Mol Med 24:4082–4091

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kachur S, Lavie CJ, de Schutter A, Milani RV, Ventura HO (2017) Obesity and cardiovascular diseases. Minerva Medica 108:212–228

    PubMed  Google Scholar 

  24. Dutta P, Courties G, Wei Y, Leuschner F, Gorbatov R, Robbins CS, Iwamoto Y, Thompson B, Carlson AL, Heidt T, Majmudar MD, Lasitschka F, Etzrodt M, Waterman P, Waring MT, Chicoine AT, van der Laan AM, Niessen HW, Piek JJ, Rubin BB, Butany J, Stone JR, Katus HA, Murphy SA, Morrow DA, Sabatine MS, Vinegoni C, Moskowitz MA, Pittet MJ, Libby P, Lin CP, Swirski FK, Weissleder R, Nahrendorf M (2012) Myocardial infarction accelerates atherosclerosis. Nature 487:325–329

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang P, Ren YL, Lan Y, Li JL, Luo J, Li J, Cai JP (2015) Phagocytosis of platelets enhances endothelial cell survival under serum deprivation. Exp Biol Med (Maywood NJ) 240:876–883

    CAS  Google Scholar 

  26. Xiao-Hong Y, Li L, Yan-Xia P, Hong L, Wei-Fang R, Yan L, An-Jing R, Chao-Shu T, Wen-Jun Y (2006) Salusins protect neonatal rat cardiomyocytes from serum deprivation-induced cell death through upregulation of GRP78. J Cardiovasc Pharmacol 48:41–46

    PubMed  Google Scholar 

  27. Zheng J, Fang J, Yin YJ, Wang XC, Ren AJ, Bai J, Sun XJ, Yuan WJ, Lin L (2010) Leptin protects cardiomyocytes from serum-deprivation-induced apoptosis by increasing anti-oxidant defence. Clin Exp Pharmacol Physiol 37:955–962

    CAS  PubMed  Google Scholar 

  28. Liu H, Liu P, Shi X, Yin D, Zhao J (2018) NR4A2 protects cardiomyocytes against myocardial infarction injury by promoting autophagy. Cell Death Discov 4:27

    PubMed  PubMed Central  Google Scholar 

  29. Yao Y, Zhou J, Lu C, Sun W, Kong W, Zhao J (2021) MicroRNA-155-5p/EPAS1/interleukin 6 pathway participated in the protection function of sphingosylphosphorylcholine to ischemic cardiomyocytes. Life Sci 264:118692

    CAS  PubMed  Google Scholar 

  30. Liu J, Chang F, Li F, Fu H, Wang J, Zhang S, Zhao J, Yin D (2015) Palmitate promotes autophagy and apoptosis through ROS-dependent JNK and p38 MAPK. Biochem Biophys Res Commun 463:262–267

    CAS  PubMed  Google Scholar 

  31. Tao L, Bei Y, Li Y, Xiao J (2018) Neonatal rat cardiomyocytes isolation, culture, and determination of microRNAs’ effects in proliferation. Methods Mol Biol (Clifton, NJ) 1733:203–213

    CAS  Google Scholar 

  32. Im K, Mareninov S, Diaz MFP, Yong WH (2019) An introduction to performing immunofluorescence staining. Methods Mol Bio (Clifton, NY) 1897:299–311

    CAS  Google Scholar 

  33. Wu R, Dang F, Li P, Wang P, Xu Q, Liu Z, Li Y, Wu Y, Chen Y, Liu Y (2019) The circadian protein period2 suppresses mTORC1 activity via recruiting Tsc1 to mTORC1 complex. Cell Metabol 29:653-667e6

    CAS  Google Scholar 

  34. Chen Y, Zhu E, Fan S, Ding H, Ma S, Zhu M, Deng S, Chen J, Zhao M (2019) Important roles of C-terminal residues in degradation of capsid protein of classical swine fever virus. Virol J 16:127

    PubMed  PubMed Central  Google Scholar 

  35. Gashler AL, Swaminathan S, Sukhatme VP (1993) A novel repression module, an extensive activation domain, and a bipartite nuclear localization signal defined in the immediate-early transcription factor Egr-1. Mol Cell Biol 13:4556–4571

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Thiel G, Cibelli G (2002) Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol 193:287–292

    CAS  PubMed  Google Scholar 

  37. Hu Z, Tie Y, Lv G, Zhu J, Fu H, Zheng X (2018) Transcriptional activation of miR-320a by ATF2, ELK1 and YY1 induces cancer cell apoptosis under ionizing radiation conditions. Int J Oncol 53(4):1691–1702. https://doi.org/10.3892/ijo.2018.4497

    Article  CAS  Google Scholar 

  38. Tsuchihashi T, Maeda J, Shin CH, Ivey KN, Black BL, Olson EN, Yamagishi H, Srivastava D (2011) Hand2 function in second heart field progenitors is essential for cardiogenesis. Deve Biol 351:62–69

    CAS  Google Scholar 

  39. Sizer AJ, Martin KA (2017) Respecting boundaries: CTCF, chromatin structural organization, and heart failure. J Thorac Dis 9:4889–4892

    PubMed  PubMed Central  Google Scholar 

  40. Shashi Gupta DC, Dérijard B, Roger J, Davis (1995) Transcription factor ATF2 regulation by the JNK signal transduction pathway. Plenum Press 26720:389–393

    Google Scholar 

  41. Xu S, Kang UG (2014) Cocaine induces ubiquitination of Egr-1 in the rat dorsal striatum. Neuroreport 25:1362–1367

    CAS  PubMed  Google Scholar 

  42. Santiago FS, Sanchez-Guerrero E, Zhang G, Zhong L, Raftery MJ, Khachigian LM (2019) Extracellular signal-regulated kinase-1 phosphorylates early growth response-1 at serine 26. Biochem Biophys Res Commun 510:345–351

    CAS  PubMed  Google Scholar 

  43. Shibata T, Kawakami S, Noguchi T, Tanaka T, Asaumi Y, Kanaya T, Nagai T, Nakao K, Fujino M, Nagatsuka K, Ishibashi-Ueda H, Nishimura K, Miyamoto Y, Kusano K, Anzai T, Goto Y, Ogawa H, Yasuda S (2015) Prevalence, clinical features, and prognosis of acute myocardial infarction attributable to coronary artery embolism. Circulation 132:241–250

    CAS  PubMed  Google Scholar 

  44. Liang Y, Xu X, Li Q, Deng Y, Xie M, Zheng Y, Ou W, He Q, Xu X, Wu W, Li T (2020) Chronic Alcohol Intake Exacerbates Cardiac Dysfunction After Myocardial Infarction. Alcohol Alcohol (Oxford Oxfordshire) 55:524–530

    CAS  Google Scholar 

  45. Yan SF, Fujita T, Lu J, Okada K, Shan Zou Y, Mackman N, Pinsky DJ, Stern DM (2000) Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat Med 6:1355–1361

    CAS  PubMed  Google Scholar 

  46. Okada M, Wang CY, Hwang DW, Sakaguchi T, Olson KE, Yoshikawa Y, Minamoto K, Mazer SP, Yan SF, Pinsky DJ (2002) Transcriptional control of cardiac allograft vasculopathy by early growth response gene-1 (Egr-1). Circul Res 91:135–142

    CAS  Google Scholar 

  47. Liu J, Chang F, Li F, Fu H, Wang J, Zhang S, Zhao J, Yin D (2015) Palmitate promotes autophagy and apoptosis through ROS-dependent JNK and p38 MAPK. Biochem Biophys Res Commun 463(3):262–267

    CAS  PubMed  Google Scholar 

  48. Ge D, Yue HW, Liu HH, Zhao J (2018) Emerging roles of sphingosylphosphorylcholine in modulating cardiovascular functions and diseases. Acta Pharmacol Sin 39:1830–1836

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nixon GF, Mathieson FA, Hunter I (2008) The multi-functional role of sphingosylphosphorylcholine. Prog Lipid Res 47:62–75

    CAS  PubMed  Google Scholar 

  50. Choi SK, Ahn DS, Lee YH (2009) Comparison of contractile mechanisms of sphingosylphosphorylcholine and sphingosine-1-phosphate in rabbit coronary artery. Cardiovasc Res 82:324–332

    CAS  PubMed  Google Scholar 

  51. Hemmings DG (2006) Signal transduction underlying the vascular effects of sphingosine 1-phosphate and sphingosylphosphorylcholine. Naunyn Schmiedebergs Arch Pharmacol 373:18–29

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants of the National Natural Science Foundation of China (Grant No. 31671180). We thank Sen Wang, Haiyan Yu, Xiaomin Zhao, YuYu Guo from State Key Laboratory of Microbial Technology, Shandong University for the assistance in microimaging of Fluorescence microscope analysis.

Author information

Authors and Affiliations

Authors

Contributions

The study was designed by Jing Zhao. Jinrun Zhou and Yujuan Yao carried out the experiments, Jiaojiao Zhang, Zhaohui Wang, Tianshu Zheng and Yao Lu analyzed data. Jing Zhao and Jinrun Zhou wrote the paper. Jing Zhan and Weihua Kong checked and finalized the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jing Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

10495_2022_1714_MOESM1_ESM.tif

Supplementary file1 (TIF 1666 KB) Fig. S1 A, B H9c2 cells were serum deprived and treated with SPC (5 μM) for 12 h, the levels of apoptosis were detected by TUNEL analysis. C, D H9c2 cells were treated with BSA and PA (0.4 mM) for 12 h, the levels of apoptosis were detected by TUNEL analysis. Data are expressed as the mean ± S.D. *p < 0.05 and **p < 0.01; n = 3

Supplementary file2 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Yao, Y., Zhang, J. et al. JNK-dependent phosphorylation and nuclear translocation of EGR-1 promotes cardiomyocyte apoptosis. Apoptosis 27, 246–260 (2022). https://doi.org/10.1007/s10495-022-01714-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01714-3

Keywords

Navigation