Skip to main content
Log in

MicroRNA-136-5p protects cardiomyocytes from coronary microembolization through the inhibition of pyroptosis

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

This study investigated how miR-136-5p partially affected cardiomyocyte pyroptosis in rats with coronary microembolization (CME). The cardiac function and structure of rats with CME were evaluated using echocardiography, hematoxylin and eosin staining, Masson staining, and troponin I level. Pyroptosis was induced by lipopolysaccharide (LPS) in isolated rat cardiomyocytes and evaluated by the expression of caspase-1, NOD-like receptor family pyrin domain-containing 3, interleukin-1β, and gasdermin D–N. After cell transfection, the expression of Ataxin-1 like (ATXN1L), pyrin domain-containing 1 (PYDC1), and pyroptosis-related proteins was assessed. Dual-luciferase reporter and immunoprecipitation assays were used to verify the relationships among miR-136-5p, ATXN1L, and capicua (CIC). MiR-136-5p was under-expressed, whereas ATXN1L was overexpressed in rats with CME and in LPS-treated primary cardiomyocytes. MiR-136-5p targeted ATXN1L, and ATXN1L bound to CIC to suppress PYDC1 expression. MiR-136-5p overexpression suppressed pyroptosis by inhibiting the binding of ATXN1L with CIC and promoting PYDC1 expression, which was reversed by simultaneous elevation of ATXN1L. In conclusion, miR-136-5p suppressed pyroptosis by upregulating PYDC1 via ATXN1L/CIC axis, thereby attenuating cardiac damage caused by CME.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Gac P, Poreba M, Pawlas K et al (2017) Influence of environmental tobacco smoke on morphology and functions of cardiovascular system assessed using diagnostic imaging. Inhal Toxicol 29:518–529

    Article  CAS  PubMed  Google Scholar 

  2. Pettersen TR, Fridlund B, Bendz B et al (2018) Challenges adhering to a medication regimen following first-time percutaneous coronary intervention: a patient perspective. Int J Nurs Stud 88:16–24

    Article  PubMed  Google Scholar 

  3. Kretzschmar D, Jung C, Otto S et al (2012) Detection of coronary microembolization by Doppler ultrasound in patients with stable angina pectoris during percutaneous coronary interventions under an adjunctive antithrombotic therapy with abciximab: design and rationale of the High Intensity Transient Signals ReoPro (HITS-RP) study. Cardiovasc Ultrasound 10:21

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang J, Chen H, Zhou Y et al (2016) Atorvastatin inhibits myocardial apoptosis in a swine model of coronary microembolization by regulating PTEN/PI3K/Akt signaling pathway. Cell Physiol Biochem 38:207–219

    Article  PubMed  Google Scholar 

  5. Emini Veseli B, Perrotta P, De Meyer GRA et al (2017) Animal models of atherosclerosis. Eur J Pharmacol 816:3–13

    Article  CAS  PubMed  Google Scholar 

  6. An TH, He QW, Xia YP et al (2017) MiR-181b antagonizes atherosclerotic plaque vulnerability through modulating macrophage polarization by directly targeting Notch1. Mol Neurobiol 54:6329–6341

    Article  CAS  PubMed  Google Scholar 

  7. Heusch G, Skyschally A, Kleinbongard P (2018) Coronary microembolization and microvascular dysfunction. Int J Cardiol 258:17–23

    Article  PubMed  Google Scholar 

  8. Skyschally A, Walter B, Heusch G (2013) Coronary microembolization during early reperfusion: infarct extension, but protection by ischaemic postconditioning. Eur Heart J 34:3314–3321

    Article  CAS  PubMed  Google Scholar 

  9. Song Y, Yang L, Guo R et al (2019) Long noncoding RNA MALAT1 promotes high glucose-induced human endothelial cells pyroptosis by affecting NLRP3 expression through competitively binding miR-22. Biochem Biophys Res Commun 509:359–366

    Article  CAS  PubMed  Google Scholar 

  10. Olivier E, Dutot M, Regazzetti A et al (2017) 25-Hydroxycholesterol induces both P2 × 7-dependent pyroptosis and caspase-dependent apoptosis in human skin model: new insights into degenerative pathways. Chem Phys Lipids 207:171–178

    Article  CAS  PubMed  Google Scholar 

  11. Mao Q, Liang XL, Zhang CL et al (2019) LncRNA KLF3-AS1 in human mesenchymal stem cell-derived exosomes ameliorates pyroptosis of cardiomyocytes and myocardial infarction through miR-138-5p/Sirt1 axis. Stem Cell Res Ther 10:393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rauf A, Shah M, Yellon DM et al (2019) Role of Caspase 1 in ischemia/reperfusion injury of the myocardium. J Cardiovasc Pharmacol 74:194–200

    Article  CAS  PubMed  Google Scholar 

  13. Paraskevopoulou MD, Hatzigeorgiou AG (2016) Analyzing miRNA-LncRNA interactions. Methods Mol Biol 1402:271–286

    Article  CAS  PubMed  Google Scholar 

  14. Witwer KW, Halushka MK (2016) Toward the promise of microRNAs—enhancing reproducibility and rigor in microRNA research. RNA Biol 13:1103–1116

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee S, Choi E, Cha MJ et al (2015) Looking for pyroptosis-modulating miRNAs as a therapeutic target for improving myocardium survival. Mediators Inflamm 2015:254871

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lin Y, Dan H, Lu J (2020) Overexpression of microRNA-136-3p alleviates myocardial injury in coronary artery disease via the Rho A/ROCK signaling pathway. Kidney Blood Press Res 45:477–496

    Article  CAS  PubMed  Google Scholar 

  17. Gao Z, Li Q, Zhang Y et al (2020) Ripasudil alleviated the inflammation of RPE cells by targeting the miR-136-5p/ROCK/NLRP3 pathway. BMC Ophthalmol 20:134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rezkalla S, Kloner RA, Khatib G et al (1988) Effect of metoprolol in acute coxsackievirus B3 murine myocarditis. J Am Coll Cardiol 12:412–414

    Article  CAS  PubMed  Google Scholar 

  19. Wang H, Zhou X, Li H et al (2017) Transient receptor potential melastatin 2 negatively regulates LPS-ATP-induced caspase-1-dependent pyroptosis of bone marrow-derived macrophage by modulating ROS production. Biomed Res Int 2017:2975648

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yang D, He Y, Munoz-Planillo R et al (2015) Caspase-11 requires the pannexin-1 channel and the purinergic P2 × 7 pore to mediate pyroptosis and endotoxic shock. Immunity 43:923–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao LR, Xing RL, Wang PM et al (2018) NLRP1 and NLRP3 inflammasomes mediate LPS/ATPinduced pyroptosis in knee osteoarthritis. Mol Med Rep 17:5463–5469

    CAS  PubMed  Google Scholar 

  22. Fernandes-Alnemri T, Wu J, Yu JW et al (2007) The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 14:1590–1604

    Article  CAS  PubMed  Google Scholar 

  23. Mizutani A, Wang L, Rajan H et al (2005) Boat, an AXH domain protein, suppresses the cytotoxicity of mutant ataxin-1. EMBO J 24:3339–3351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wong D, Lounsbury K, Lum A et al (2019) Transcriptomic analysis of CIC and ATXN1L reveal a functional relationship exploited by cancer. Oncogene 38:273–290

    Article  CAS  PubMed  Google Scholar 

  25. Srimathi T, Robbins SL, Dubas RL et al (2008) Mapping of POP1-binding site on pyrin domain of ASC. J Biol Chem 283:15390–15398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bikou O, Tharakan S, Yamada KP et al (2019) A novel large animal model of thrombogenic coronary microembolization. Front Cardiovasc Med 6:157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Su Q, Li L, Zhao J et al (2017) Effects of trimetazidine on PDCD4/NF-kappaB/TNF-alpha pathway in coronary microembolization. Cell Physiol Biochem 42:753–760

    Article  CAS  PubMed  Google Scholar 

  28. Zhaolin Z, Guohua L, Shiyuan W et al (2019) Role of pyroptosis in cardiovascular disease. Cell Prolif 52:e12563

    Article  PubMed  Google Scholar 

  29. Jiang C, Jiang L, Li Q et al (2018) Acrolein induces NLRP3 inflammasome-mediated pyroptosis and suppresses migration via ROS-dependent autophagy in vascular endothelial cells. Toxicology 410:26–40

    Article  CAS  PubMed  Google Scholar 

  30. Fu Q, Wu J, Zhou XY et al (2019) NLRP3/caspase-1 pathway-induced pyroptosis mediated cognitive deficits in a mouse model of sepsis-associated encephalopathy. Inflammation 42:306–318

    Article  CAS  PubMed  Google Scholar 

  31. Guo M, An F, Yu H et al (2017) Comparative effects of schisandrin A, B, and C on Propionibacterium acnes-induced, NLRP3 inflammasome activation-mediated IL-1beta secretion and pyroptosis. Biomed Pharmacother 96:129–136

    Article  CAS  PubMed  Google Scholar 

  32. Tapia VS, Daniels MJD, Palazon-Riquelme P et al (2019) The three cytokines IL-1beta, IL-18, and IL-1alpha share related but distinct secretory routes. J Biol Chem 294:8325–8335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shi J, Zhao Y, Wang K et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–665

    Article  CAS  PubMed  Google Scholar 

  34. He WT, Wan H, Hu L et al (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res 25:1285–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou Y, Li T, Chen Z et al (2021) Overexpression of lncRNA TUG1 alleviates NLRP3 inflammasome-mediated cardiomyocyte pyroptosis through targeting the miR-186-5p/XIAP Axis in coronary microembolization-induced myocardial damage. Front Immunol 12:637598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lei Q, Yi T, Chen C (2018) NF-kappaB-gasdermin D (GSDMD) axis couples oxidative stress and NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome-mediated cardiomyocyte pyroptosis following myocardial infarction. Med Sci Monit 24:6044–6052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qiu Z, He Y, Ming H et al (2019) Lipopolysaccharide (LPS) aggravates high glucose- and hypoxia/reoxygenation-induced injury through activating ROS-dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes. J Diabetes Res 2019:8151836

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhao AP, Dong YF, Liu W et al (2014) Nicorandil inhibits inflammasome activation and Toll-like receptor-4 signal transduction to protect against oxygen-glucose deprivation-induced inflammation in BV-2 cells. CNS Neurosci Ther 20:147–153

    Article  CAS  PubMed  Google Scholar 

  39. Su Q, Li L, Zhao J et al (2017) MiRNA expression profile of the myocardial tissue of pigs with coronary microembolization. Cell Physiol Biochem 43:1012–1024

    Article  CAS  PubMed  Google Scholar 

  40. Su Y, Zhu C, Wang B et al (2021) Circular RNA Foxo3 in cardiac ischemia-reperfusion injury in heart transplantation: a new regulator and target. Am J Transplant 21:2992–3004

    Article  CAS  PubMed  Google Scholar 

  41. Ghanbari M, Franco OH, de Looper HW et al (2015) Genetic variations in microRNA-binding sites affect microRNA-mediated regulation of several genes associated with cardio-metabolic phenotypes. Circ Cardiovasc Genet 8:473–486

    Article  CAS  PubMed  Google Scholar 

  42. Rip J, Nierman MC, Wareham NJ et al (2006) Serum lipoprotein lipase concentration and risk for future coronary artery disease: the EPIC-Norfolk prospective population study. Arterioscler Thromb Vasc Biol 26:637–642

    Article  CAS  PubMed  Google Scholar 

  43. Lee Y, Fryer JD, Kang H et al (2011) ATXN1 protein family and CIC regulate extracellular matrix remodeling and lung alveolarization. Dev Cell 21:746–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim E, Lu HC, Zoghbi HY et al (2013) Structural basis of protein complex formation and reconfiguration by polyglutamine disease protein Ataxin-1 and Capicua. Genes Dev 27:590–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Csont T, Murlasits Z, Menesi D et al (2015) Tissue-specific gene expression in rat hearts and aortas in a model of vascular nitrate tolerance. J Cardiovasc Pharmacol 65:485–493

    Article  CAS  PubMed  Google Scholar 

  46. Bunda S, Heir P, Metcalf J et al (2019) CIC protein instability contributes to tumorigenesis in glioblastoma. Nat Commun 10:661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Needham BL, Smith JA, Zhao W et al (2015) Life course socioeconomic status and DNA methylation in genes related to stress reactivity and inflammation: the multi-ethnic study of atherosclerosis. Epigenetics 10:958–969

    Article  PubMed  PubMed Central  Google Scholar 

  48. Atluri VS, Pilakka-Kanthikeel S, Garcia G et al (2016) Effect of cocaine on HIV infection and inflammasome gene expression profile in HIV infected macrophages. Sci Rep 6:27864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lachner J, Mlitz V, Tschachler E et al (2017) Epidermal cornification is preceded by the expression of a keratinocyte-specific set of pyroptosis-related genes. Sci Rep 7:17446

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Thanks for the grants from the National Natural Science Foundation of China (Grant No. 81960079), the Natural Science Foundation of Guangxi Province (Grant No. 2020GXNSFDA238007; Grant No. 2020GXNSFFA297002), The Key Research and Development Program of Guangxi (Grant No. AB20159005), Guangxi BaGui Scholars Special Project and Guangxi Health Commission Key Laboratory of Disease Proteomics Research.

Author information

Authors and Affiliations

Authors

Contributions

CRP and XYL contributed equally to the manuscript, WRM and SQ had full access to all of the data in the study and takes responsibility for the integrity of the data, the accuracy of the data analysis, RYL and HSR wrote the manuscript draft. CRP, XYL and ZJ performed research. KBH and LQZ contributed substantially to the study design and the writing of the manuscript. YXH and DRX contributed to the manuscript preparation and statistical analysis. CRP and XYL revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Riming Wei or Qiang Su.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest regarding the publication of this paper.

Ethical approval

The experimental design complied with the implementation regulations for the management of medical experimental animals of the National Health and Planning Committee of China and the Guide for the Use and Management of Laboratory Animals of the National Institutes of Health. All study protocols were authorized by the ethics committee of Guilin Medical University.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10495_2022_1712_MOESM1_ESM.tif

Supplementary figure 1 Note: (A) Cardiomyocyte morphology; (B) Immunofluorescence analysis of cTnI expression in rat primary cardiomyocytes. Supplementary material 1 (TIF 11578 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, R., Xu, Y., Ren, Y. et al. MicroRNA-136-5p protects cardiomyocytes from coronary microembolization through the inhibition of pyroptosis. Apoptosis 27, 206–221 (2022). https://doi.org/10.1007/s10495-022-01712-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-022-01712-5

Keywords

Navigation