Skip to main content

Advertisement

Log in

WNT signaling modulates chemoresistance to temozolomide in p53-mutant glioblastoma multiforme

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Glioblastoma multiforme (GBM) has been characterized by the high incidence, therapy tolerance and relapse. The molecular events controlling GBM resistant to chemotherapy temozolomide (TMZ) remain to be elusive. Here, we identified WNT signaling was amplified by TMZ and mediated drug response in GBM. We found O6-methylguanine DNA methyltransferase (MGMT) was redundant to WNT-mediated chemoresistance, which was highly associated with p53 mutation status. In GBM with p53 mutation, loss of function of p53 downregulated miR-34a expression, which represses transcription of WNT ligand 6 (WNT6) by directly binding to 3′ UTR of WNT6 mRNA, leading to activation of WNT signaling, and the eventual WNT-mediated chemoresistance to TMZ. Combined treatment of TMZ with WNT inhibitor or miR34a mimic induced drug sensitivity of p53-mutant GBM cells and extended survival in xenograft mice in vivo. Our findings provide insight into understanding the molecular mechanism of GBM chemoresistance to TMZ and facilitating to develop novel treatment strategy to combat p53-mutant GBM by targeting miR-34a/WNT6 axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Upon request.

Code availability

Not applicable.

References

  1. Alexander BM, Cloughesy TF (2017) Adult glioblastoma. J Clin Oncol 35(21):2402–2409

    Article  CAS  Google Scholar 

  2. Anjum K et al (2017) Current status and future therapeutic perspectives of glioblastoma multiforme (GBM) therapy: a review. Biomed Pharmacother 92:681–689

    Article  CAS  Google Scholar 

  3. Zhang J, Stevens MF, Bradshaw TD (2012) Temozolomide: mechanisms of action, repair and resistance. Curr Mol Pharmacol 5(1):102–114

    Article  CAS  Google Scholar 

  4. Yang SH et al (2016) Metformin treatment reduces temozolomide resistance of glioblastoma cells. Oncotarget 7(48):78787–78803

    Article  Google Scholar 

  5. Aldape K et al (2015) Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129(6):829–848

    Article  CAS  Google Scholar 

  6. Alonso MM et al (2007) Adenovirus-based strategies overcome temozolomide resistance by silencing the O6-methylguanine-DNA methyltransferase promoter. Cancer Res 67(24):11499–11504

    Article  CAS  Google Scholar 

  7. Bocangel DB et al (2002) Multifaceted resistance of gliomas to temozolomide. Clin Cancer Res 8(8):2725–2734

    CAS  PubMed  Google Scholar 

  8. Yin J et al (2019) Exosomal transfer of miR-1238 contributes to temozolomide-resistance in glioblastoma. EBioMedicine 42:238–251

    Article  Google Scholar 

  9. Lee Y et al (2016) WNT signaling in glioblastoma and therapeutic opportunities. Lab Invest 96(2):137–150

    Article  CAS  Google Scholar 

  10. McCord M et al (2017) Targeting WNT signaling for multifaceted glioblastoma therapy. Front Cell Neurosci 11:318

    Article  Google Scholar 

  11. Kim Y et al (2012) Wnt activation is implicated in glioblastoma radioresistance. Lab Invest 92(3):466–473

    Article  CAS  Google Scholar 

  12. Tomar VS, Patil V, Somasundaram K (2020) Temozolomide induces activation of Wnt/beta-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol 36(3):273–278

    Article  CAS  Google Scholar 

  13. Miao W et al (2015) p53 upregulated modulator of apoptosis sensitizes drug-resistant U251 glioblastoma stem cells to temozolomide through enhanced apoptosis. Mol Med Rep 11(6):4165–4173

    Article  CAS  Google Scholar 

  14. Lin J et al (2018) Characterizing the molecular mechanisms of acquired temozolomide resistance in the U251 glioblastoma cell line by protein microarray. Oncol Rep 39(5):2333–2341

    CAS  PubMed  Google Scholar 

  15. Yun EJ et al (2020) Wnt/beta-catenin signaling pathway induces autophagy-mediated temozolomide-resistance in human glioblastoma. Cell Death Dis 11(9):771

    Article  CAS  Google Scholar 

  16. Zhan T, Rindtorff N, Boutros M (2017) Wnt signaling in cancer. Oncogene 36(11):1461–1473

    Article  CAS  Google Scholar 

  17. Erasimus H et al (2016) DNA repair mechanisms and their clinical impact in glioblastoma. Mutat Res Rev Mutat Res 769:19–35

    Article  CAS  Google Scholar 

  18. Wellenstein MD et al (2019) Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis. Nature 572(7770):538–542

    Article  CAS  Google Scholar 

  19. Cho YH et al (2020) 5-FU promotes stemness of colorectal cancer via p53-mediated WNT/beta-catenin pathway activation. Nat Commun 11(1):5321

    Article  CAS  Google Scholar 

  20. Borges KS et al (2020) Wnt/beta-catenin activation cooperates with loss of p53 to cause adrenocortical carcinoma in mice. Oncogene 39(30):5282–5291

    Article  CAS  Google Scholar 

  21. Kim NH et al (2011) p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci Signal 4(197):ra71

    Article  Google Scholar 

  22. Lee SY (2016) Temozolomide resistance in glioblastoma multiforme. Genes Dis 3(3):198–210

    Article  Google Scholar 

  23. Ahmad A et al (2019) Thymoquinone (2-Isoprpyl-5-methyl-1, 4-benzoquinone) as a chemopreventive/anticancer agent: chemistry and biological effects. Saudi Pharm J 27(8):1113–1126

    Article  CAS  Google Scholar 

  24. Yi GZ et al (2019) Acquired temozolomide resistance in MGMT-deficient glioblastoma cells is associated with regulation of DNA repair by DHC2. Brain 142(8):2352–2366

    Article  Google Scholar 

  25. Ham SW et al (2019) TP53 gain-of-function mutation promotes inflammation in glioblastoma. Cell Death Differ 26(3):409–425

    Article  CAS  Google Scholar 

  26. Zhang Y et al (2018) The p53 pathway in glioblastoma. Cancers (Basel). https://doi.org/10.3390/cancers10090297

    Article  PubMed Central  Google Scholar 

  27. Wang Y et al (2004) p53 disruption profoundly alters the response of human glioblastoma cells to DNA topoisomerase I inhibition. Oncogene 23(6):1283–1290

    Article  CAS  Google Scholar 

  28. Koul D et al (2012) Antitumor activity of NVP-BKM120–a selective pan class I PI3 kinase inhibitor showed differential forms of cell death based on p53 status of glioma cells. Clin Cancer Res 18(1):184–195

    Article  CAS  Google Scholar 

  29. Saadatpour L et al (2016) Glioblastoma: exosome and microRNA as novel diagnosis biomarkers. Cancer Gene Ther 23(12):415–418

    Article  CAS  Google Scholar 

  30. Qiu S et al (2013) Interactions of miR-323/miR-326/miR-329 and miR-130a/miR-155/miR-210 as prognostic indicators for clinical outcome of glioblastoma patients. J Transl Med 11:10

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Suzhou Science and Technology Development Plan (SYS2020161 to Z.R. Ma, SYS2020151 to Z.H. Zhu and SYS2018072 to Q. Wang), Gusu Health personnel Training program of Suzhou city (GSWS2020050 to S.Z. Cai and GSWS2019017 to X.M. Yan), Clinical key diseases diagnosis and treatment technology projects (LCZX201908 to X.M. Yan).

Author information

Authors and Affiliations

Authors

Contributions

ZM, SC, QX, WL, HX, and ZH, performed the experiments; ZM, SC, ZH and XY, performed data analysis; QW, ZM and SC designed the studies and wrote the manuscript; QW, ZH and XY revised the manuscript.

Corresponding author

Correspondence to Qian Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Cai, S., Xiong, Q. et al. WNT signaling modulates chemoresistance to temozolomide in p53-mutant glioblastoma multiforme. Apoptosis 27, 80–89 (2022). https://doi.org/10.1007/s10495-021-01704-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-021-01704-x

Keywords

Navigation