Skip to main content

Interconnections among major forms of regulated cell death

Abstract

As a basic biological phenomenon of cells, regulated cell death (RCD) has irreplaceable influence on the occurrence and development of many processes of life and diseases. RCD plays an important role in the stability of the homeostasis, the development of multiple systems and the evolution of organisms. Thus comprehensively understanding of RCD is undoubtedly helpful in the innovation of disease treatment. Recently, research on the underlying mechanisms of the major forms of RCD, such as apoptosis, autophagy, necroptosis, pyroptosis, paraptosis and neutrophils NETosis has made significant breakthroughs. In addition, the interconnections among them have attracted increasing attention from global scholars in the field of life sciences. Here, recent advances in RCD research field are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Galluzzi L, Vitale I, Aaronson SA et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25(3):486–541. https://doi.org/10.1038/s41418-017-0012-4

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Tsuchiya K (2020) Inflammasome-associated cell death: pyroptosis, apoptosis, and physiological implications. Microbiol Immunol 64(4):252–269. https://doi.org/10.1111/1348-0421.12771

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Taabazuing CY, Okondo MC, Bachovchin DA (2017) Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages. Cell Chem Biol 24(4):507–514. https://doi.org/10.1016/j.chembiol.2017.03.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Tsuchiya K, Nakajima S, Hosojima S et al (2019) Caspase-1 initiates apoptosis in the absence of gasdermin D. Nat Commun 10(1):2091. https://doi.org/10.1038/s41467-019-09753-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    He WT, Wan H, Hu L et al (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res 25(12):1285–1298. https://doi.org/10.1038/cr.2015.139

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Wang Y, Gao W, Shi X et al (2017) Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547(7661):99–103. https://doi.org/10.1038/nature22393

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Vince JE, Wong WW, Gentle I et al (2012) Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity 36(2):215–227. https://doi.org/10.1016/j.immuni.2012.01.012

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Yabal M, Müller N, Adler H et al (2014) XIAP restricts TNF- and RIP3-dependent cell death and inflammasome activation. Cell Rep 7(6):1796–1808. https://doi.org/10.1016/j.celrep.2014.05.008

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Dondelinger Y, Jouan-Lanhouet S, Divert T et al (2015) NF-κB-independent role of IKKα/IKKβ in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. Mol Cell 60(1):63–76. https://doi.org/10.1016/j.molcel.2015.07.032

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Lawlor KE, Feltham R, Yabal M et al (2017) XIAP loss triggers RIPK3- and caspase-8-driven IL-1β activation and cell death as a consequence of TLR-MyD88-induced cIAP1-TRAF2 degradation. Cell Rep 20(3):668–682. https://doi.org/10.1016/j.celrep.2017.06.073

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Chen KW, Lawlor KE, von Pein JB et al (2018) Cutting edge: blockade of inhibitor of apoptosis proteins sensitizes neutrophils to TNF- but not lipopolysaccharide-mediated cell death and IL-1β secretion. J Immunol 200(10):3341–3346. https://doi.org/10.4049/jimmunol.1701620

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Wicki S, Gurzeler U, Wei-Lynn Wong W, Jost PJ, Bachmann D, Kaufmann T (2016) Loss of XIAP facilitates switch to TNFα-induced necroptosis in mouse neutrophils. Cell Death Dis 7(10):e2422. https://doi.org/10.1038/cddis.2016.311

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Chen KW, Demarco B, Heilig R et al (2019) Extrinsic and intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome assembly. EMBO J 38(10):e101638

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Conos SA, Chen KW, De Nardo D et al (2017) Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proc Natl Acad Sci USA 114(6):E961–E969. https://doi.org/10.1073/pnas.1613305114

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Chen KW, Demarco B, Broz P (2020) Beyond inflammasomes: emerging function of gasdermins during apoptosis and NETosis. EMBO J 39(2):e103397

    CAS  Article  Google Scholar 

  16. 16.

    Hamam HJ, Palaniyar N (2019) Post-translational modifications in NETosis and NETs-mediated diseases. Biomolecules 9(8):369. https://doi.org/10.3390/biom9080369

    CAS  Article  PubMed Central  Google Scholar 

  17. 17.

    Hamam HJ, Palaniyar N (2019) Histone deacetylase inhibitors dose-dependently switch neutrophil death from NETosis to apoptosis. Biomolecules 9(5):184. https://doi.org/10.3390/biom9050184

    CAS  Article  PubMed Central  Google Scholar 

  18. 18.

    Yirong C, Shengchen W, Jiaxin S, Shuting W, Ziwei Z (2020) DEHP induces neutrophil extracellular traps formation and apoptosis in carp isolated from carp blood via promotion of ROS burst and autophagy. Environ Pollut 262:114295. https://doi.org/10.1016/j.envpol.2020.114295

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Wang Y, Wang Y, Wu J et al (2019) PRAK is required for the formation of neutrophil extracellular traps. Front Immunol 10:1252. https://doi.org/10.3389/fimmu.2019.01252

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Schwarzer R, Laurien L, Pasparakis M (2020) New insights into the regulation of apoptosis, necroptosis, and pyroptosis by receptor interacting protein kinase 1 and caspase-8. Curr Opin Cell Biol 63:186–193. https://doi.org/10.1016/j.ceb.2020.02.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    O'Donnell JA, Lehman J, Roderick JE et al (2018) Dendritic cell RIPK1 maintains immune homeostasis by preventing inflammation and autoimmunity. J Immunol 200(2):737–748. https://doi.org/10.4049/jimmunol.1701229

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Newton K, Wickliffe KE, Maltzman A et al (2016) RIPK1 inhibits ZBP1-driven necroptosis during development. Nature 540(7631):129–133. https://doi.org/10.1038/nature20559

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Lin J, Kumari S, Kim C et al (2016) RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. Nature 540(7631):124–128. https://doi.org/10.1038/nature20558

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Takahashi N, Vereecke L, Bertrand MJ et al (2014) RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature 513(7516):95–99. https://doi.org/10.1038/nature13706

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Rickard JA, O'Donnell JA, Evans JM et al (2014) RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157(5):1175–1188. https://doi.org/10.1016/j.cell.2014.04.019

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Dondelinger Y, Delanghe T, Rojas-Rivera D et al (2017) MK2 phosphorylation of RIPK1 regulates TNF-mediated cell death. Nat Cell Biol 19(10):1237–1247. https://doi.org/10.1038/ncb3608

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Geng J, Ito Y, Shi L et al (2017) Regulation of RIPK1 activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis. Nat Commun 8(1):359. https://doi.org/10.1038/s41467-017-00406-w

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Lawlor KE, Khan N, Mildenhall A et al (2015) RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat Commun 6:6282. https://doi.org/10.1038/ncomms7282

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Gurung P, Anand PK, Malireddi RK et al (2014) FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J Immunol 192(4):1835–1846. https://doi.org/10.4049/jimmunol.1302839

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Fritsch M, Günther SD, Schwarzer R et al (2019) Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature 575(7784):683–687. https://doi.org/10.1038/s41586-019-1770-6

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Chen Z, Nie SD, Qu ML et al (2018) The autophagic degradation of Cav-1 contributes to PA-induced apoptosis and inflammation of astrocytes. Cell Death Dis 9(7):771. https://doi.org/10.1038/s41419-018-0795-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Gump JM, Staskiewicz L, Morgan MJ, Bamberg A, Riches DW, Thorburn A (2014) Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1. Nat Cell Biol 16(1):47–54. https://doi.org/10.1038/ncb2886

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Doherty J, Baehrecke EH (2018) Life, death and autophagy. Nat Cell Biol 20(10):1110–1117. https://doi.org/10.1038/s41556-018-0201-5

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Cooper KF (2018) Till death do us part: the marriage of autophagy and apoptosis. Oxid Med Cell Longev 2018:4701275. https://doi.org/10.1155/2018/4701275

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Maiuri MC, Criollo A, Kroemer G (2010) Crosstalk between apoptosis and autophagy within the Beclin 1 interactome. EMBO J 29(3):515–516. https://doi.org/10.1038/emboj.2009.377

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Lindqvist LM, Heinlein M, Huang DC, Vaux DL (2014) Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibiting Bax and Bak. Proc Natl Acad Sci U S A 111(23):8512–8517. https://doi.org/10.1073/pnas.1406425111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Bassik MC, Scorrano L, Oakes SA, Pozzan T, Korsmeyer SJ (2004) Phosphorylation of BCL-2 regulates ER Ca2+ homeostasis and apoptosis. EMBO J 23(5):1207–1216. https://doi.org/10.1038/sj.emboj.7600104

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Lindqvist LM, Vaux DL (2014) BCL2 and related prosurvival proteins require BAK1 and BAX to affect autophagy. Autophagy 10(8):1474–1475. https://doi.org/10.4161/auto.29639

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Wu J, Zhou Y, Yuan Z et al (2019) Autophagy and apoptosis interact to modulate T-2 toxin-induced toxicity in liver cells. Toxins (Basel) 11(1):45. https://doi.org/10.3390/toxins11010045

    CAS  Article  Google Scholar 

  40. 40.

    Kroemer G, Galluzzi L, Vandenabeele P, Abrams J et al (2009) Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ 16(1):3–11. https://doi.org/10.1038/cdd.2008.150

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Sodrul IMD, Wang C, Chen X, Du J, Sun H (2017) Role of ginsenosides in reactive oxygen species-mediated anticancer therapy. Oncotarget 9(2):2931–2950

    Article  Google Scholar 

  42. 42.

    Ranjan A, Iwakuma T (2016) Non-canonical cell death induced by p53. Int J Mol Sci 17(12):2068. https://doi.org/10.3390/ijms17122068

    CAS  Article  PubMed Central  Google Scholar 

  43. 43.

    Dhani S, Nagiah S, Naidoo DB, Chuturgoon AA (2017) Fusaric acid immunotoxicity and MAPK activation in normal peripheral blood mononuclear cells and Thp-1 cells. Sci Rep 7(1):3051. https://doi.org/10.1038/s41598-017-03183-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Chen KW, Monteleone M, Boucher D et al (2018) Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci Immunol 3(26):eaar6676. https://doi.org/10.1126/sciimmunol.aar6676

    Article  PubMed  Google Scholar 

  45. 45.

    Sollberger G, Choidas A, Burn GL et al (2018) Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci Immunol 3(26):eaar6689. https://doi.org/10.1126/sciimmunol.aar6689

    Article  PubMed  Google Scholar 

  46. 46.

    Kuang S, Zheng J, Yang H et al (2017) Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis. Proc Natl Acad Sci USA 114(40):10642–10647. https://doi.org/10.1073/pnas.1708194114

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Shi J, Gao W, Shao F (2017) Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42(4):245–254. https://doi.org/10.1016/j.tibs.2016.10.004

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Feng S, Fox D, Man SM (2018) Mechanisms of gasdermin family members in inflammasome signaling and cell death. J Mol Biol 430(18PtB):3068–3080. https://doi.org/10.1016/j.jmb.2018.07.002

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Kovacs SB, Miao EA (2017) Gasdermins: effectors of pyroptosis. Trends Cell Biol 27(9):673–684. https://doi.org/10.1016/j.tcb.2017.05.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191(3):677–691. https://doi.org/10.1083/jcb.201006052

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y (2010) PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med 207(9):1853–1862. https://doi.org/10.1084/jem.20100239

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Kenny EF, Herzig A, Krüger R et al (2017) Diverse stimuli engage different neutrophil extracellular trap pathways. Elife 6:e24437. https://doi.org/10.7554/eLife.24437

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Kambara H, Liu F, Zhang X et al (2018) Gasdermin D exerts anti-inflammatory effects by promoting neutrophil death. Cell Rep 22(11):2924–2936. https://doi.org/10.1016/j.celrep.2018.02.067

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Metzler KD, Goosmann C, Lubojemska A, Zychlinsky A, Papayannopoulos V (2014) A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep 8(3):883–896. https://doi.org/10.1016/j.celrep.2014.06.044

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Claude-Taupin A, Bissa B, Jia J, Gu Y, Deretic V (2018) Role of autophagy in IL-1β export and release from cells. Semin Cell Dev Biol 83:36–41. https://doi.org/10.1016/j.semcdb.2018.03.012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Dupont N, Jiang S, Pilli M, Ornatowski W, Bhattacharya D, Deretic V (2011) Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J 30(23):4701–4711. https://doi.org/10.1038/emboj.2011.398

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Ito M, Shichita T, Okada M et al (2015) Bruton's tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury. Nat Commun 6:7360. https://doi.org/10.1038/ncomms8360

    Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Maejima I, Takahashi A, Omori H et al (2013) Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J 32(17):2336–2347. https://doi.org/10.1038/emboj.2013.171

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Jiang C, Jiang L, Li Q et al (2018) Acrolein induces NLRP3 inflammasome-mediated pyroptosis and suppresses migration via ROS-dependent autophagy in vascular endothelial cells. Toxicology 410:26–40. https://doi.org/10.1016/j.tox.2018.09.002

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Bai Z, Liu W, He D et al (2020) Protective effects of autophagy and NFE2L2 on reactive oxygen species-induced pyroptosis of human nucleus pulposus cells. Aging (Albany NY) 12(8):7534–7548

    Article  Google Scholar 

  61. 61.

    Wei Q, Zhu R, Zhu J, Zhao R, Li M (2019) E2-induced activation of the NLRP3 inflammasome triggers pyroptosis and inhibits autophagy in HCC cells. Oncol Res 27(7):827–834. https://doi.org/10.3727/096504018X15462920753012

    Article  PubMed  Google Scholar 

  62. 62.

    Remijsen Q, Vanden Berghe T, Wirawan E et al (2011) Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res 21(2):290–304. https://doi.org/10.1038/cr.2010.150

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Suzuki E, Maverakis E, Sarin R et al (2016) T cell-independent mechanisms associated with neutrophil extracellular trap formation and selective autophagy in IL-17A-mediated epidermal hyperplasia. J Immunol 197(11):4403–4412. https://doi.org/10.4049/jimmunol.1600383

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Migliario M, Tonello S, Rocchetti V, Rizzi M, Renò F (2018) Near infrared laser irradiation induces NETosis via oxidative stress and autophagy. Lasers Med Sci 33(9):1919–1924. https://doi.org/10.1007/s10103-018-2556-z

    Article  PubMed  Google Scholar 

  65. 65.

    Cheng ML, Ho HY, Lin HY, Lai YC, Chiu DT (2013) Effective NET formation in neutrophils from individuals with G6PD Taiwan-Hakka is associated with enhanced NADP(+) biosynthesis. Free Radic Res 47(9):699–709. https://doi.org/10.3109/10715762.2013.816420

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    McInturff AM, Cody MJ, Elliott EA et al (2012) Mammalian target of rapamycin regulates neutrophil extracellular trap formation via induction of hypoxia-inducible factor 1 α. Blood 120(15):3118–3125. https://doi.org/10.1182/blood-2012-01-405993

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Itakura A, McCarty OJ (2013) Pivotal role for the mTOR pathway in the formation of neutrophil extracellular traps via regulation of autophagy. Am J Physiol Cell Physiol 305(3):C348–C354. https://doi.org/10.1152/ajpcell.00108.2013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Chicca IJ, Milward MR, Chapple ILC et al (2018) Development and application of high-content biological screening for modulators of NET production. Front Immunol 9:337. https://doi.org/10.3389/fimmu.2018.00337

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Pham DL, Ban GY, Kim SH et al (2017) Neutrophil autophagy and extracellular DNA traps contribute to airway inflammation in severe asthma. Clin Exp Allergy 47(1):57–70. https://doi.org/10.1111/cea.12859

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Frangou E, Chrysanthopoulou A, Mitsios A et al (2019) REDD1/autophagy pathway promotes thromboinflammation and fibrosis in human systemic lupus erythematosus (SLE) through NETs decorated with tissue factor (TF) and interleukin-17A (IL-17A). Ann Rheum Dis 78(2):238–248. https://doi.org/10.1136/annrheumdis-2018-213181

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Pyo JO, Nah J, Jung YK (2012) Molecules and their functions in autophagy. Exp Mol Med 44(2):73–80. https://doi.org/10.3858/emm.2012.44.2.029

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The Natural Science Foundation of China (NSFC, No. 81671976, 31970132), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shuyan Wu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Zhou, L., Yuan, H. et al. Interconnections among major forms of regulated cell death. Apoptosis 25, 616–624 (2020). https://doi.org/10.1007/s10495-020-01632-2

Download citation

Keywords

  • Regulated cell death
  • Programmed cell death
  • Apoptosis
  • Non-apoptotic regulated cell death