Rational design of genetically encoded reporter genes for optical imaging of apoptosis


Apoptosis is a process in which cells are genetically regulated to cause a series of changes in morphology and metabolic activity, which ultimately lead to cell death. Apoptosis plays a vital role in the entire life cycle of an organism. Too much or too little apoptosis can cause a variety of diseases. Therefore, efficient and convenient methods for detecting apoptosis are necessary for clinical treatment and drug development. Traditional methods for detecting apoptosis may cause damage to the body during sample collection, such as for flow cytometry analysis. So it is necessary to monitor apoptosis without invasion in vivo. Optical imaging technique provides a more sensitive and economical way for apoptosis visualization. A subset of engineered reporter genes based on fluorescent proteins or luciferases are currently developed to monitor the dynamic changes in apoptotic markers, such as activation of caspases and exposure of phosphatidylserine on the surface of dying cells. These reporters detect apoptosis when cells have not undergone significant morphological changes, providing conditions for early diagnosis of tumors. In addition, these reporters show considerable value in high-throughput screening of apoptosis-related drugs and evaluation of their efficacy in treating tumors. In this review, we will discuss the recent research progress in the optical imaging of apoptosis based on the genetically encoded reporter genes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

(Reprinted with permission from [31]. Copyright 2019 American Chemical Society.)

Fig. 3

(Reprinted with permission from [33]. Copyright 2019 American Chemical Society.)

Fig. 4
Fig. 5
Fig. 6
Fig. 7

(Reprinted with permission from [88]. Copyright 2019 American Chemical Society.)


  1. 1.

    Niu G, Chen X (2010) Apoptosis imaging: beyond annexin V. J Nucl Med 51:1659–1662

    CAS  PubMed  Google Scholar 

  2. 2.

    Xia CH, Lun ZQ, Lin XY, Wang BQ, Wang Y (2017) Apoptosis imaging by radionuclide probes. J Iran Chem Soc 14:2437–2447

    CAS  Google Scholar 

  3. 3.

    Cotter TG (2009) Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 9:501–507

    CAS  PubMed  Google Scholar 

  4. 4.

    Wang X, Feng H, Zhao S et al (2017) SPECT and PET radiopharmaceuticals for molecular imaging of apoptosis: from bench to clinic. Oncotarget 8:20476–20495

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Zeng WB, Wang XB, Xu PF, Liu G, Eden HS, Chen XY (2015) Molecular imaging of apoptosis: from micro to macro. Theranostics 5:559–582

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Huang X, Lee S, Chen X (2011) Design of “smart” probes for optical imaging of apoptosis. Am J Nucl Med Mol Imaging 1:3–17

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Green DR (2005) Apoptotic pathways: ten minutes to dead. Cell 121:671–674

    CAS  PubMed  Google Scholar 

  8. 8.

    Gupta S (2003) Molecular signaling in death receptor and mitochondrial pathways of apoptosis. Int J Oncol 22:15–20

    CAS  PubMed  Google Scholar 

  9. 9.

    Nagata S, Sakuragi T, Segawa K (2020) Flippase and scramblase for phosphatidylserine exposure. Curr Opin Immunol 62:31–38

    CAS  PubMed  Google Scholar 

  10. 10.

    Nagata S (2000) Apoptotic DNA fragmentation. Exp Cell Res 256:12–18

    CAS  PubMed  Google Scholar 

  11. 11.

    Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391:43–50

    CAS  PubMed  Google Scholar 

  12. 12.

    Liu X, Zou H, Slaughter C, Wang X (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89:175–184

    CAS  PubMed  Google Scholar 

  13. 13.

    Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99

    CAS  PubMed  Google Scholar 

  14. 14.

    Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    CAS  PubMed  Google Scholar 

  15. 15.

    Galluzzi L, Vitale I, Abrams J et al (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–120

    CAS  PubMed  Google Scholar 

  16. 16.

    Ormerod M (1998) The study of apoptotic cells by flow cytometry. Leukemia.

  17. 17.

    Rieger AM, Barreda DR (2016) Accurate assessment of cell death by imaging flow cytometry. Methods Mol Biol 1389:209–220

    PubMed  Google Scholar 

  18. 18.

    Mountz JD, Hsu HC, Wu Q, Liu HG, Zhang HG, Mountz JM (2002) Molecular imaging: new applications for biochemistry. J Cell Biochem 162–171.

  19. 19.

    Youn H, Chung JK (2013) Reporter gene imaging. Am J Roentgenol 201:W206–214

    Google Scholar 

  20. 20.

    Kang JH, Chung JK (2008) Molecular-genetic imaging based on reporter gene expression. J Nucl Med 49(Suppl 2):164S–179S

    CAS  PubMed  Google Scholar 

  21. 21.

    Serganova I, Blasberg RG (2019) Molecular imaging with reporter genes: has its promise been delivered? J Nucl Med 60:1665–1681

    CAS  PubMed  Google Scholar 

  22. 22.

    Luker KE, Smith MC, Luker GD, Gammon ST, Piwnica-Worms H, Piwnica-Worms D (2004) Kinetics of regulated protein–protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proc Natl Acad Sci USA 101:12288–12293

    CAS  PubMed  Google Scholar 

  23. 23.

    Shin JH, Chung JK, Kang JH et al (2004) Noninvasive imaging for monitoring of viable cancer cells using a dual-imaging reporter gene. J Nucl Med 45:2109–2115

    PubMed  Google Scholar 

  24. 24.

    Tangney M, Francis KP (2012) In vivo optical imaging in gene & cell therapy. Curr Gene Ther 12:2–11

    CAS  PubMed  Google Scholar 

  25. 25.

    Dmitriy M, Chudakov MVM, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1103–1163

    Google Scholar 

  26. 26.

    Chudakov DM, Lukyanov S, Lukyanov KA (2005) Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 23:605–613

    CAS  PubMed  Google Scholar 

  27. 27.

    Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan. J Cell Comp Physiol 59:223–239

    CAS  PubMed  Google Scholar 

  28. 28.

    Zhang J, Wang X, Cui W et al (2013) Visualization of caspase-3-like activity in cells using a genetically encoded fluorescent biosensor activated by protein cleavage. Nat Commun 4

  29. 29.

    To TL, Piggott BJ, Makhijani K, Yu D, Jan YN, Shu X (2015) Rationally designed fluorogenic protease reporter visualizes spatiotemporal dynamics of apoptosis in vivo. Proc Natl Acad Sci USA 112:3338–3343

    CAS  PubMed  Google Scholar 

  30. 30.

    To TL, Schepis A, Ruiz-Gonzalez R et al (2016) Rational design of a GFP-based fluorogenic caspase reporter for imaging apoptosis in vivo. Cell Chem Biol 23:875–882

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Zhang Q, Schepis A, Huang H et al (2019) Designing a green fluorogenic protease reporter by flipping a beta strand of GFP for imaging apoptosis in animals. J Am Chem Soc 141:4526–4530

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Yivgi-Ohana N, Eifer M, Addadi Y, Neeman M, Gross A (2011) Utilizing mitochondrial events as biomarkers for imaging apoptosis. Cell Death Dis 2:e166

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Nasu Y, Asaoka Y, Namae M, Nishina H, Yoshimura H, Ozawa T (2015) Genetically encoded fluorescent probe for imaging apoptosis in vivo with spontaneous GFP complementation. Anal Chem 88:838–844

    PubMed  Google Scholar 

  34. 34.

    Nicholls SB, Chu J, Abbruzzese G, Tremblay KD, Hardy JA. (2011) Mechanism of a genetically encoded dark-to-bright reporter for caspase activity. J Biol Chem

  35. 35.

    Balderstone LA, Dawson JC, Welman A, Serrels A, Wedge SR, Brunton VG (2018) Development of a fluorescence-based cellular apoptosis reporter. Methods Appl Fluoresc 7:015001

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Bardet PL, Kolahgar G, Mynett A et al (2008) A fluorescent reporter of caspase activity for live imaging. Proc Natl Acad Sci USA 105:13901–13905

    CAS  PubMed  Google Scholar 

  37. 37.

    van Ham TJ, Mapes J, Kokel D, Peterson RT (2010) Live imaging of apoptotic cells in zebrafish. FASEB J 24:4336–4342

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Breart B, Lemaître F, Celli S, Bousso P (2008) Two-photon imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice. J Clin Invest 118:1390–1397

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Garrod Kym R, Moreau Hélène D, Garcia Z et al (2012) Dissecting T cell contraction in vivo using a genetically encoded reporter of apoptosis. Cell Rep 2:1438–1447

    CAS  PubMed  Google Scholar 

  40. 40.

    Luo KQ, Vivian CY, Pu Y, Chang DC (2003) Measuring dynamics of caspase-8 activation in a single living HeLa cell during TNFα-induced apoptosis. Biochem Biophys Res Commun 304:217–222

    CAS  PubMed  Google Scholar 

  41. 41.

    Takemoto K, Nagai T, Miyawaki A, Miura M (2003) Spatio-temporal activation of caspase revealed by indicator that is insensitive to environmental effects. J Cell Biol 160:235–243

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Zhou F, Xing D, Wu S, Chen WR (2010) Intravital imaging of tumor apoptosis with FRET probes during tumor therapy. Mol Imag Biol 12:63–70

    Google Scholar 

  43. 43.

    Takemoto K, Kuranaga E, Tonoki A, Nagai T, Miyawaki A, Miura M (2007) Local initiation of caspase activation in Drosophila salivary gland programmed cell death in vivo. Proc Natl Acad Sci USA 104:13367–13372

    CAS  PubMed  Google Scholar 

  44. 44.

    Wu Y, Xing D, Chen WR (2006) Single cell FRET imaging for determination of pathway of tumor cell apoptosis induced by photofrin-PDT. Cell Cycle 5:729–734

    CAS  PubMed  Google Scholar 

  45. 45.

    Mayer CT, Gazumyan A, Kara EE et al (2017) The microanatomic segregation of selection by apoptosis in the germinal center. Science (New York, NY) 358.

  46. 46.

    Kawai H, Suzuki T, Kobayashi T et al (2005) Simultaneous real-time detection of initiator-and effector-caspase activation by double fluorescence resonance energy transfer analysis. J Pharmacol Sci 97:361–368

    CAS  PubMed  Google Scholar 

  47. 47.

    Lin J, Zhang Z, Yang J, Zeng S, Liu B, Luo Q (2006) Real-time detection of caspase-2 activation in a single living HeLa cell during cisplatin-induced apoptosis. J Biomed Opt 11:024011

    PubMed  Google Scholar 

  48. 48.

    Kominami K, Nagai T, Sawasaki T et al (2012) In vivo imaging of hierarchical spatiotemporal activation of caspase-8 during apoptosis. PLoS ONE 7:e50218

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Buschhaus JM, Humphries B, Luker KE, Luker GD. (2018) A caspase-3 reporter for fluorescence lifetime imaging of single-cell apoptosis. Cells 7.

  50. 50.

    Gammon ST, Villalobos VM, Roshal M, Samrakandi M, Piwnica-Worms D (2009) Rational design of novel red-shifted BRET pairs: platforms for real-time single-chain protease biosensors. Biotechnol Prog 25:559–569

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Tsuboi S, Jin T (2017) Bioluminescence resonance energy transfer (BRET)-coupled AnnexinV-functionalized quantum dots for near-infrared optical detection of apoptotic cells. ChemBioChem 18:2231–2235

    CAS  PubMed  Google Scholar 

  52. 52.

    Sniegowski JA, Lappe JW, Patel HN, Huffman HA, Wachter RM (2005) Base catalysis of chromophore formation in Arg96 and Glu222 variants of green fluorescent protein. J Biol Chem 280:26248–26255

    CAS  PubMed  Google Scholar 

  53. 53.

    Nicholls SB, Hardy JA (2013) Structural basis of fluorescence quenching in caspase activatable-GFP. Protein Sci 22:247–257

    CAS  PubMed  Google Scholar 

  54. 54.

    Wu P, Nicholls SB, Hardy JA (2013) A tunable, modular approach to fluorescent protease-activated reporters. Biophys J 104:1605–1614

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    CAS  PubMed  Google Scholar 

  56. 56.

    Sun Y, Day RN, Periasamy A (2011) Investigating protein-protein interactions in living cells using fluorescence lifetime imaging microscopy. Nat Protoc 6:1324–1340

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Buschhaus JM, Gibbons AE, Luker KE, Luker GD (2017) Fluorescence lifetime imaging of a caspase-3 apoptosis reporter. Curr Protocols Cell Biol 77:21.12.21–21.12.12.

  58. 58.

    Harpur AG, Wouters FS, Bastiaens PI (2001) Imaging FRET between spectrally similar GFP molecules in single cells. Nat Biotechnol 19:167–169

    CAS  PubMed  Google Scholar 

  59. 59.

    Yeh H-W, Ai H-W (2019) Development and applications of bioluminescent and chemiluminescent reporters and biosensors. Annu Rev Analyt Chem 12:129–150

    CAS  Google Scholar 

  60. 60.

    Mezzanotte L, van’t Root M, Karatas H, Goun EA, Löwik CW (2017) In vivo molecular bioluminescence imaging: new tools and applications. Trends Biotechnol 35:640–652

    CAS  PubMed  Google Scholar 

  61. 61.

    Paulmurugan R, Umezawa Y, Gambhir S (2002) Noninvasive imaging of protein–protein interactions in living subjects by using reporter protein complementation and reconstitution strategies. Proc Natl Acad Sci USA 99:15608–15613

    CAS  PubMed  Google Scholar 

  62. 62.

    Torkzadeh-Mahani M, Ataei F, Nikkhah M, Hosseinkhani S (2012) Design and development of a whole-cell luminescent biosensor for detection of early-stage of apoptosis. Biosensors Bioelectron 38:362–368

    CAS  Google Scholar 

  63. 63.

    Thormeyer D, Ammerpohl O, Larsson O et al (2003) Characterization of lacZ complementation deletions using membrane receptor dimerization. Biotechniques 34(346–350):352–345

    Google Scholar 

  64. 64.

    Coppola JM, Ross BD, Rehemtulla A (2008) Noninvasive imaging of apoptosis and its application in cancer therapeutics. Clin Cancer Res 14:2492–2501

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Lee HW, Singh TD, Lee SW et al (2014) Evaluation of therapeutic effects of natural killer (NK) cell-based immunotherapy in mice using in vivo apoptosis bioimaging with a caspase-3 sensor. FASEB J 28:2932–2941

    CAS  PubMed  Google Scholar 

  66. 66.

    Fu Q, Duan X, Yan S et al (2013) Bioluminescence imaging of caspase-3 activity in mouse liver. Apoptosis 18:998–1007

    CAS  PubMed  Google Scholar 

  67. 67.

    Galban S, Jeon YH, Bowman BM et al (2013) Imaging proteolytic activity in live cells and animal models. PLoS ONE 8:e66248

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Kanno A, Yamanaka Y, Hirano H, Umezawa Y, Ozawa T (2007) Cyclic luciferase for real-time sensing of caspase-3 activities in living mammals. Angew Chem Int Ed Eng 46:7595–7599

    CAS  Google Scholar 

  69. 69.

    Kanno A, Umezawa Y, Ozawa T (2009) Detection of apoptosis using cyclic luciferase in living mammals. Methods Mol Biol 574:105–114

    CAS  PubMed  Google Scholar 

  70. 70.

    Ozaki M, Haga S, Ozawa T (2012) In vivo monitoring of liver damage using caspase-3 probe. Theranostics 2:207–214

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Niu G, Zhu L, Ho DN et al (2013) Longitudinal bioluminescence imaging of the dynamics of doxorubicin induced apoptosis. Theranostics 3:190–200

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Wang Y, Zhang B, Liu W et al (2016) Noninvasive bioluminescence imaging of the dynamics of sanguinarine induced apoptosis via activation of reactive oxygen species. Oncotarget 7:22355–22367

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Nazari M, Emamzadeh R, Hosseinkhani S, Cevenini L, Michelini E, Roda A (2012) Renilla luciferase-labeled Annexin V: a new probe for detection of apoptotic cells. Analyst 137:5062–5070

    CAS  PubMed  Google Scholar 

  74. 74.

    Head T, Dau P, Duffort S et al (2017) An enhanced bioluminescence-based Annexin V probe for apoptosis detection in vitro and in vivo. Cell Death Dis 8:e2826–e2826

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Tannous BA, Kim D-E, Fernandez JL, Weissleder R, Breakefield XO (2005) Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol Ther 11:435–443

    CAS  PubMed  Google Scholar 

  76. 76.

    Gaur S, Bhargava-Shah A, Hori S et al (2017) Engineering intracellularly retained Gaussia luciferase reporters for improved biosensing and molecular imaging applications. ACS Chem Bio 12:2345–2353

    CAS  Google Scholar 

  77. 77.

    Eilers M, Picard D, Yamamoto KR, Bishop JM (1989) Chimaeras of myc oncoprotein and steroid receptors cause hormone-dependent transformation of cells. Nature 340:66–68

    CAS  PubMed  Google Scholar 

  78. 78.

    Superti-Furga G, Bergers G, Picard D, Busslinger M (1991) Hormone-dependent transcriptional regulation and cellular transformation by Fos-steroid receptor fusion proteins. P Natl Acad Sci USA 88:5114–5118

    CAS  Google Scholar 

  79. 79.

    Israel DI, Kaufman RJ (1993) Dexamethasone negatively regulates the activity of a chimeric dihydrofolate reductase/glucocorticoid receptor protein. P Natl Acad Sci USA 90:4290–4294

    CAS  Google Scholar 

  80. 80.

    Laxman B, Hall DE, Bhojani MS et al (2002) Noninvasive real-time imaging of apoptosis. Proc Natl Acad Sci USA 99:16551–16555

    CAS  PubMed  Google Scholar 

  81. 81.

    Khanna D, Hamilton CA, Bhojani MS et al (2010) A transgenic mouse for imaging caspase-dependent apoptosis within the skin. J Investig Dermatol 130:1797–1806

    CAS  PubMed  Google Scholar 

  82. 82.

    Yang M, Jiang P, Hoffman RM (2015) Early reporting of apoptosis by real-time imaging of cancer cells labeled with green fluorescent protein in the nucleus and red fluorescent protein in the cytoplasm. Anticancer Res 35:2539–2543

    CAS  PubMed  Google Scholar 

  83. 83.

    Shah K, Tang Y, Breakefield X, Weissleder R (2003) Real-time imaging of TRAIL-induced apoptosis of glioma tumors in vivo. Oncogene 22:6865–6872

    CAS  PubMed  Google Scholar 

  84. 84.

    Bagci-Onder T, Agarwal A, Flusberg D, Wanningen S, Sorger P, Shah K (2013) Real-time imaging of the dynamics of death receptors and therapeutics that overcome TRAIL resistance in tumors. Oncogene 32:2818–2827

    CAS  PubMed  Google Scholar 

  85. 85.

    Singh TD, Lee HW, Lee S-W, et al. (2014) Noninvasive imaging of apoptosis induced by adenovirus-mediated cancer gene therapy using a caspase-3 biosensor in living subjects. Mol Imaging 13.

  86. 86.

    Niers JM, Kerami M, Pike L, Lewandrowski G, Tannous BA (2011) Multimodal in vivo imaging and blood monitoring of intrinsic and extrinsic apoptosis. Mol Ther 19:1090–1096

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Maguire CA, Bovenberg MS, Crommentuijn MH et al (2013) Triple bioluminescence imaging for in vivo monitoring of cellular processes. Mol Ther-Nucl Acids 2:e99

    Google Scholar 

  88. 88.

    Ray P, De A, Patel M, Gambhir SS (2008) Monitoring caspase-3 activation with a multimodality imaging sensor in living subjects. Clin Cancer Res 14:5801–5809

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Zhang F, Zhu L, Liu G et al (2011) Multimodality imaging of tumor response to doxil. Theranostics 1:302–309

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Niu G, Chen X (2012) Molecular imaging with activatable reporter systems. Theranostics 2:413

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Attia ABE, Balasundaram G, Moothanchery M et al (2019) A review of clinical photoacoustic imaging: current and future trends. Photoacoustics 16:100144

    PubMed  PubMed Central  Google Scholar 

  92. 92.

    Yang Q, Cui H, Cai S, Yang X, Forrest ML (2011) In vivo photoacoustic imaging of chemotherapy-induced apoptosis in squamous cell carcinoma using a near-infrared caspase-9 probe. J Biomed Opt 16:116026

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Wang Y, Hu X, Weng J et al (2019) A photoacoustic probe for the imaging of tumor apoptosis by caspase-mediated macrocyclization and self-assembly. Angew Chem Int Ed Engl 58:4886–4890

    CAS  PubMed  Google Scholar 

Download references


This work was supported by National Natural Science Foundation of China (No. 81772010) and The National Key Research and Development Program of China (973 Program) (Grant No. 2017YFA0205202).

Author information



Corresponding author

Correspondence to Fu Wang.

Ethics declarations

Conflict of interest

No potential conflicts of interest were disclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Song, Y. & Wang, F. Rational design of genetically encoded reporter genes for optical imaging of apoptosis. Apoptosis 25, 459–473 (2020). https://doi.org/10.1007/s10495-020-01621-5

Download citation


  • Reporter genes
  • Optical imaging
  • Apoptosis
  • Tumor treatment