Skip to main content
Log in

Liver-specific Bid silencing inhibits APAP-induced cell death in mice

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Acetaminophen (APAP)-induced acute liver failure (ALF) is a life-threatening disease with only a few treatment options available. Though extensive research has been conducted for more than 40 years, the underlying pathomechanisms are not completely understood. Here, we studied as to whether APAP-induced ALF can be prevented in mice by silencing the BH3-interacting domain death agonist (Bid) as a potential key player in APAP pathology. For silencing Bid expression in mice, siRNABid was formulated with the liver-specific siRNA delivery system DBTC and administered 48 h prior to APAP exposure. Mice which were pre-treated with HEPES (vehicleHEPES) and siRNALuci served as siRNA controls. Hepatic pathology was assessed by in vivo fluorescence microscopy, molecular biology, histology and laboratory analysis 6 h after APAP or PBS exposure. Application of siRNABid caused a significant decrease of mRNA and protein expression of Bid in APAP-exposed mice. Off-targets, such as cytochrome P450 2E1 and glutathione, which are known to be consumed under APAP intoxication, were comparably reduced in all APAP-exposed mice, underlining the specificity of Bid silencing. In APAP-exposed mice non-sterile inflammation with leukocyte infiltration and perfusion failure remained almost unaffected by Bid silencing. However, the Bid silencing reduced hepatocellular damage, evident by a remarkable decrease of DNA fragmented cells in APAP-exposed mice. In these mice, the expression of the pro-apoptotic protein Bax, which recently gained importance in the cell death pathway of regulated necrosis, was also significantly reduced, in line with a decrease in both, necrotic liver tissue and plasma transaminase activities. In addition, plasma levels of HMGB1, a marker of sterile inflammation, were significantly diminished. In conclusion, the liver-specific silencing of Bid expression did not protect APAP-exposed mice from microcirculatory dysfunction, but markedly protected the liver from necrotic cell death and in consequence from sterile inflammation. The study contributes to the understanding of the molecular mechanism of the APAP-induced pathogenic pathway by strengthening the importance of Bid and Bid silencing associated effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee WM, Squires RH, Nyberg SL et al (2008) Acute liver failure: summary of a workshop. Hepatology 47(4):1401–1415

    Article  PubMed  Google Scholar 

  2. Bernal W, Wendon J (2013) Acute liver failure. N Engl J Med 369:2525–2534. https://doi.org/10.1056/NEJMra1208937

    Article  CAS  PubMed  Google Scholar 

  3. Gow PJ, Jones RM, Dobson JL, Angus PW (2004) Etiology and outcome of fulminant hepatic failure managed at an Australian liver transplant unit. J Gastroenterol Hepatol 19:154–159

    Article  PubMed  Google Scholar 

  4. Reuben A, Koch DG, Lee WM (2010) Drug-induced acute liver failure: results of a U.S. multicenter, prospective study. Hepatology 52:2065–2076. https://doi.org/10.1002/hep.23937

    Article  PubMed  Google Scholar 

  5. Larson AM, Polson J, Fontana RJ et al (2005) Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology 42:1364–1372. https://doi.org/10.1002/hep.20948

    Article  CAS  PubMed  Google Scholar 

  6. Fontana RJ (2008) Acute liver failure including acetaminophen overdose. Med Clin North Am 92:761–794. https://doi.org/10.1016/j.mcna.2008.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee WM (2004) Acetaminophen and the U.S. acute liver failure study group: lowering the risks of hepatic failure. Hepatology 40:6–9. https://doi.org/10.1002/hep.20293

    Article  CAS  PubMed  Google Scholar 

  8. Lancaster EM, Hiatt JR, Zarrinpar A (2015) Acetaminophen hepatotoxicity: an updated review. Arch Toxicol 89:193–199. https://doi.org/10.1007/s00204-014-1432-2

    Article  CAS  PubMed  Google Scholar 

  9. Jaeschke H, Knight TR, Bajt ML (2003) The role of oxidant stress and reactive nitrogen species in acetaminophen hepatotoxicity. Toxicol Lett 144:279–288

    Article  CAS  PubMed  Google Scholar 

  10. Jaeschke H, Bajt ML (2006) Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicol Sci 89:31–41. https://doi.org/10.1093/toxsci/kfi336

    Article  CAS  PubMed  Google Scholar 

  11. Yan H-M, Ramachandran A, Bajt ML et al (2010) The oxygen tension modulates acetaminophen-induced mitochondrial oxidant stress and cell injury in cultured hepatocytes. Toxicol Sci 117:515–523. https://doi.org/10.1093/toxsci/kfq208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nelson SD (1990) Molecular mechanisms of the hepatotoxicity caused by acetaminophen. Semin Liver Dis 10:267–278. https://doi.org/10.1055/s-2008-1040482

    Article  CAS  PubMed  Google Scholar 

  13. Adams ML, Pierce RH, Vail ME et al (2001) Enhanced acetaminophen hepatotoxicity in transgenic mice overexpressing BCL-2. Mol Pharmacol 60:907–915

    Article  CAS  PubMed  Google Scholar 

  14. Reid AB, Kurten RC, McCullough SS et al (2005) Mechanisms of acetaminophen-induced hepatotoxicity: role of oxidative stress and mitochondrial permeability transition in freshly isolated mouse hepatocytes. J Pharmacol Exp Ther 312:509–516. https://doi.org/10.1124/jpet.104.075945

    Article  CAS  PubMed  Google Scholar 

  15. Jaeschke H, McGill MR, Ramachandran A (2012) Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev 44:88–106. https://doi.org/10.3109/03602532.2011.602688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cohen SD, Khairallah EA (1997) Selective protein arylation and acetaminophen-induced hepatotoxicity. Drug Metab Rev 29:59–77

    Article  CAS  PubMed  Google Scholar 

  17. Jaeschke H, Williams CD, McGill MR et al (2013) Models of drug-induced liver injury for evaluation of phytotherapeutics and other natural products. Food Chem Toxicol 55:279–289. https://doi.org/10.1016/j.fct.2012.12.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McGill MR, Lebofsky M, Norris H-RK et al (2013) Plasma and liver acetaminophen-protein adduct levels in mice after acetaminophen treatment: dose-response, mechanisms, and clinical implications. Toxicol Appl Pharmacol 269:240–249. https://doi.org/10.1016/j.taap.2013.03.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hu J, Ramshesh VK, McGill MR et al (2016) Low dose acetaminophen induces reversible mitochondrial dysfunction associated with transient c-Jun N-terminal kinase activation in mouse liver. Toxicol Sci 150:204–215. https://doi.org/10.1093/toxsci/kfv319

    Article  CAS  PubMed  Google Scholar 

  20. Jaeschke H (2015) Acetaminophen: dose-dependent drug hepatotoxicity and acute liver failure in patients. Dig Dis 33:464–471. https://doi.org/10.1159/000374090

    Article  PubMed  Google Scholar 

  21. Tirmenstein MA, Nelson SD (1989) Subcellular binding and effects on calcium homeostasis produced by acetaminophen and a nonhepatotoxic regioisomer, 3’-hydroxyacetanilide, in mouse liver. J Biol Chem 264:9814–9819

    CAS  PubMed  Google Scholar 

  22. Ramachandran A, Jaeschke H (2018) Acetaminophen toxicity: novel insights into mechanisms and future perspectives. Gene Expr 18:19–30. https://doi.org/10.3727/105221617X15084371374138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kubes P, Mehal WZ (2012) Sterile inflammation in the liver. Gastroenterology 143:1158–1172. https://doi.org/10.1053/j.gastro.2012.09.008

    Article  CAS  PubMed  Google Scholar 

  24. Burcham PC, Harman AW (1991) Acetaminophen toxicity results in site-specific mitochondrial damage in isolated mouse hepatocytes. J Biol Chem 266:5049–5054

    CAS  PubMed  Google Scholar 

  25. Cover C, Mansouri A, Knight TR et al (2005) Peroxynitrite-induced mitochondrial and endonuclease-mediated nuclear DNA damage in acetaminophen hepatotoxicity. J Pharmacol Exp Ther 315:879–887. https://doi.org/10.1124/jpet.105.088898

    Article  CAS  PubMed  Google Scholar 

  26. Jaeschke H, Williams CD, Farhood A (2011) No evidence for caspase-dependent apoptosis in acetaminophen hepatotoxicity. Hepatology 53:718–719. https://doi.org/10.1002/hep.23940

    Article  PubMed  Google Scholar 

  27. Ray SD, Jena N (2000) A hepatotoxic dose of acetaminophen modulates expression of BCL-2, BCL-X(L), and BCL-X(S) during apoptotic and necrotic death of mouse liver cells in vivo. Arch Toxicol 73:594–606

    Article  CAS  PubMed  Google Scholar 

  28. El-Hassan H, Anwar K, Macanas-Pirard P et al (2003) Involvement of mitochondria in acetaminophen-induced apoptosis and hepatic injury: roles of cytochrome c, Bax, Bid, and caspases. Toxicol Appl Pharmacol 191:118–129

    Article  CAS  PubMed  Google Scholar 

  29. Kon K, Ikejima K, Okumura K et al (2007) Role of apoptosis in acetaminophen hepatotoxicity. J Gastroenterol Hepatol 22(Suppl 1):S49–S52. https://doi.org/10.1111/j.1440-1746.2007.04962.x

    Article  CAS  PubMed  Google Scholar 

  30. Zimmermann KC, Bonzon C, Green DR (2001) The machinery of programmed cell death. Pharmacol Ther 92:57–70

    Article  CAS  PubMed  Google Scholar 

  31. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Esposti MD (2002) The roles of Bid. Apoptosis 7:433–440

    Article  CAS  PubMed  Google Scholar 

  33. Karch J, Molkentin JD (2015) Regulated necrotic cell death: the passive aggressive side of Bax and Bak. Circ Res 116:1800–1809. https://doi.org/10.1161/CIRCRESAHA.116.305421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jaeschke H, McGill MR, Williams CD, Ramachandran A (2011) Current issues with acetaminophen hepatotoxicity—a clinically relevant model to test the efficacy of natural products. Life Sci 88:737–745. https://doi.org/10.1016/j.lfs.2011.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Willis SN, Adams JM (2005) Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol 17:617–625. https://doi.org/10.1016/j.ceb.2005.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lutter M, Fang M, Luo X et al (2000) Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat Cell Biol 2:754–761. https://doi.org/10.1038/35036395

    Article  CAS  PubMed  Google Scholar 

  37. Scorrano L, Ashiya M, Buttle K et al (2002) A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2:55–67

    Article  CAS  PubMed  Google Scholar 

  38. Soriano ME, Scorrano L (2011) Traveling Bax and forth from mitochondria to control apoptosis. Cell 145:15–17. https://doi.org/10.1016/j.cell.2011.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wei MC, Zong WX, Cheng EH et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730. https://doi.org/10.1126/science.1059108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cartron P-F, Gallenne T, Bougras G et al (2004) The first alpha helix of Bax plays a necessary role in its ligand-induced activation by the BH3-only proteins Bid and PUMA. Mol Cell 16:807–818. https://doi.org/10.1016/j.molcel.2004.10.028

    Article  CAS  PubMed  Google Scholar 

  41. Kim H, Rafiuddin-Shah M, Tu H-C et al (2006) Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol 8:1348–1358. https://doi.org/10.1038/ncb1499

    Article  CAS  PubMed  Google Scholar 

  42. Badmann A, Langsch S, Keogh A et al (2012) TRAIL enhances paracetamol-induced liver sinusoidal endothelial cell death in a Bim- and Bid-dependent manner. Cell Death Dis 3:e447. https://doi.org/10.1038/cddis.2012.185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Badmann A, Keough A, Kaufmann T et al (2011) Role of TRAIL and the pro-apoptotic Bcl-2 homolog Bim in acetaminophen-induced liver damage. Cell Death Dis 2:e171–e171. https://doi.org/10.1038/cddis.2011.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Farra R, Pozzato G, Dapas B et al (2006) 251 A sirna targeted against srf reduces hepatocellular carcinoma cell proliferation, showing its potential use in the growth inhibition of this type of tumour. J Hepatol 44:S100. https://doi.org/10.1016/S0168-8278(06)80252-7

    Article  Google Scholar 

  45. Dapas B, Farra R, Grassi M et al (2009) Role of E2F1-cyclin E1-cyclin E2 circuit in human coronary smooth muscle cell proliferation and therapeutic potential of its downregulation by siRNAs. Mol Med 15:297–306. https://doi.org/10.2119/molmed.2009.00030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Farra R, Dapas B, Pozzato G et al (2010) Serum response factor depletion affects the proliferation of the hepatocellular carcinoma cells HepG2 and JHH6. Biochimie 92:455–463. https://doi.org/10.1016/j.biochi.2010.01.007

    Article  CAS  PubMed  Google Scholar 

  47. Abshagen K, Brensel M, Genz B et al (2015) Foxf1 siRNA delivery to hepatic stellate cells by DBTC lipoplex formulations ameliorates fibrosis in livers of bile duct ligated mice. Curr Gene Ther 15:215–227

    Article  CAS  PubMed  Google Scholar 

  48. Bajt ML, Farhood A, Lemasters JJ, Jaeschke H (2008) Mitochondrial bax translocation accelerates DNA fragmentation and cell necrosis in a murine model of acetaminophen hepatotoxicity. J Pharmacol Exp Ther 324:8–14. https://doi.org/10.1124/jpet.107.129445

    Article  CAS  PubMed  Google Scholar 

  49. Kuhla A, Thrum M, Schaeper U et al (2015) Liver-specific Fas silencing prevents galactosamine/lipopolysaccharide-induced liver injury. Apoptosis 20:500–511. https://doi.org/10.1007/s10495-015-1088-2

    Article  CAS  PubMed  Google Scholar 

  50. Santel A, Aleku M, Keil O et al (2006) RNA interference in the mouse vascular endothelium by systemic administration of siRNA-lipoplexes for cancer therapy. Gene Ther 13:1360–1370. https://doi.org/10.1038/sj.gt.3302778

    Article  CAS  PubMed  Google Scholar 

  51. Czauderna F, Fechtner M, Dames S et al (2003) Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 31:2705–2716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Eipel C, Kidess E, Abshagen K et al (2007) Antileukoproteinase protects against hepatic inflammation, but not apoptosis in the response of D-galactosamine-sensitized mice to lipopolysaccharide. Br J Pharmacol 151:406–413. https://doi.org/10.1038/sj.bjp.0707230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Le Minh K, Klemm K, Abshagen K et al (2007) Attenuation of inflammation and apoptosis by pre- and posttreatment of darbepoetin-alpha in acute liver failure of mice. Am J Pathol 170:1954–1963. https://doi.org/10.2353/ajpath.2007.061056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Williams CD, Bajt ML, Farhood A, Jaeschke H (2010) Acetaminophen-induced hepatic neutrophil accumulation and inflammatory liver injury in CD18-deficient mice. Liver Int 30:1280–1292. https://doi.org/10.1111/j.1478-3231.2010.02284.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. James LP, McCullough SS, Knight TR et al (2003) Acetaminophen toxicity in mice lacking NADPH oxidase activity: role of peroxynitrite formation and mitochondrial oxidant stress. Free Radic Res 37:1289–1297

    Article  CAS  PubMed  Google Scholar 

  56. Jaeschke H, Williams CD, Ramachandran A, Bajt ML (2012) Acetaminophen hepatotoxicity and repair: the role of sterile inflammation and innate immunity. Liver Int 32:8–20. https://doi.org/10.1111/j.1478-3231.2011.02501.x

    Article  CAS  PubMed  Google Scholar 

  57. Laskin DL (2009) Macrophages and inflammatory mediators in chemical toxicity: a battle of forces. Chem Res Toxicol 22:1376–1385. https://doi.org/10.1021/tx900086v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Thiel K, Klingert W, Klingert K et al (2017) Porcine model characterizing various parameters assessing the outcome after acetaminophen intoxication induced acute liver failure. World J Gastroenterol 23:1576–1585. https://doi.org/10.3748/wjg.v23.i9.1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jaeschke H, Lemasters JJ (2003) Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury. Gastroenterology 125:1246–1257

    Article  CAS  PubMed  Google Scholar 

  60. Gujral JS, Knight TR, Farhood A et al (2002) Mode of cell death after acetaminophen overdose in mice: apoptosis or oncotic necrosis? Toxicol Sci 67:322–328

    Article  CAS  PubMed  Google Scholar 

  61. Kon K, Kim J-S, Jaeschke H, Lemasters JJ (2004) Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes. Hepatology 40:1170–1179. https://doi.org/10.1002/hep.20437

    Article  CAS  PubMed  Google Scholar 

  62. Jaeschke H, Cover C, Bajt ML (2006) Role of caspases in acetaminophen-induced liver injury. Life Sci 78:1670–1676. https://doi.org/10.1016/j.lfs.2005.07.003

    Article  CAS  PubMed  Google Scholar 

  63. Green DR (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629. https://doi.org/10.1126/science.1099320

    Article  CAS  PubMed  Google Scholar 

  64. Mohar et al (2014) Acetaminophen-induced liver damage in mice is associated with gender-specific adduction of peroxiredoxin-6. Redox Biol 2:377–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lawson JA, Fisher MA, Simmons CA et al (1999) Inhibition of Fas receptor (CD95)-induced hepatic caspase activation and apoptosis by acetaminophen in mice. Toxicol Appl Pharmacol 156:179–186. https://doi.org/10.1006/taap.1999.8635

    Article  CAS  PubMed  Google Scholar 

  66. Vollmar B, Menger MD (2009) The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev 89:1269–1339. https://doi.org/10.1152/physrev.00027.2008

    Article  CAS  PubMed  Google Scholar 

  67. Karch J, Kwong JQ, Burr AR et al (2013) Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice. Elife 2:e00772. https://doi.org/10.7554/eLife.00772

    Article  PubMed  PubMed Central  Google Scholar 

  68. Irrinki KM, Mallilankaraman K, Thapa RJ et al (2011) Requirement of FADD, NEMO, and BAX/BAK for aberrant mitochondrial function in tumor necrosis factor alpha-induced necrosis. Mol Cell Biol 31:3745–3758. https://doi.org/10.1128/MCB.05303-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Whelan RS, Konstantinidis K, Wei A-C et al (2012) Bax regulates primary necrosis through mitochondrial dynamics. Proc Natl Acad Sci USA 109:6566–6571. https://doi.org/10.1073/pnas.1201608109

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nikam RR, Gore KR (2018) Journey of siRNA: clinical developments and targeted delivery. Nucleic Acid Ther 28:209–224. https://doi.org/10.1089/nat.2017.0715

    Article  CAS  PubMed  Google Scholar 

  71. Kulkarni JA, Cullis PR, van der Meel R (2018) Lipid nanoparticles enabling gene therapies: from concepts to clinical utility. Nucleic Acid Ther 28:146–157. https://doi.org/10.1089/nat.2018.0721

    Article  CAS  PubMed  Google Scholar 

  72. Setten RL, Rossi JJ, Han S-P (2019) The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov 391:806. https://doi.org/10.1038/s41573-019-0017-4

    Article  CAS  Google Scholar 

  73. Springer AD, Dowdy SF (2018) GalNAc-siRNA conjugates: leading the way for delivery of RNAi therapeutics. Nucleic Acid Ther 28:109–118. https://doi.org/10.1089/nat.2018.0736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Huang W, Liang Y, Sang C et al (2018) Therapeutic nanosystems co-deliver anticancer drugs and oncogene SiRNA to achieve synergetic precise cancer chemo-gene therapy. J Mater Chem B 6:3013–3022. https://doi.org/10.1039/C8TB00004B

    Article  CAS  PubMed  Google Scholar 

  75. Bajt ML, Knight TR, Lemasters JJ, Jaeschke H (2004) Acetaminophen-induced oxidant stress and cell injury in cultured mouse hepatocytes: protection by N-acetyl cysteine. Toxicol Sci 80:343–349. https://doi.org/10.1093/toxsci/kfh151

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors cordially thank Berit Blendow, Dorothea Frenz, Maren Nerowski, and Eva Lorbeer (Institute for Experimental Surgery, University of Rostock, Germany) for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Kuhla.

Ethics declarations

Conflict of interest

Ute Schaeper and Sibylle Dames are employees of Silence Therapeutics GmbH and declare competing financial interest. The other authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maxa, M., Schaeper, U., Dames, S. et al. Liver-specific Bid silencing inhibits APAP-induced cell death in mice. Apoptosis 24, 934–945 (2019). https://doi.org/10.1007/s10495-019-01571-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-019-01571-7

Keywords

Navigation