Skip to main content
Log in

Deubiquitylatinase inhibitor b-AP15 induces c-Myc-Noxa-mediated apoptosis in esophageal squamous cell carcinoma

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Esophageal squamous cell carcinoma (ESCC) is one of the most malignant tumors in east Asia. However, the molecular mechanism underlying its progression remains unclear. The ubiquitin–proteasome system (UPS) is a central mechanism for protein degradation and turnover. Accumulating evidence showed that more and more deubiquitinases could serve as attractive anti-cancer target. The expression of USP14 and UCH37 in esophagus squamous cell carcinoma tissues were examined by immunohistochemistry and western blot assays. Effect of b-AP15, a USP14 and UCH37 inhibitor, on ESCC cell growth was evaluated by cell viability assay. After cell lines being treated with b-AP15, cell cycle, apoptosis and the expression of related proteins were further explored to investigate the anti-ESCC mechanism of b-AP15. Results showed that deubiquitinating enzymes (DUBs) USP14 and UCH37 expressed at higher levels in ESCC tissues than in adjacent tissues. b-AP15 could inhibit cell proliferation and induce G2/M cell cycle arrest and apoptosis in ESCC cells. Mechanistically, b-AP15 treatment triggered Noxa-dependent apoptosis, which was regulated by c-Myc. Silencing Noxa and c-Myc could reduce b-AP15-induced apoptosis in ESCC cells. Our results revealed a novel mechanism of anti-tumor activity of b-AP15 in ESCC, and b-AP15 could be used as a potential therapeutic agent in ESCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

ESCC:

Esophageal squamous cell cancer

UPS:

Ubiquitin–proteasome system

DUBs:

Deubiquitinating enzymes

USP14:

Ubiquitin-specific peptidase 14

UCH37:

Ubiquitin C-terminal hydrolase 37

IHC:

Immunohistochemistry

DAB:

3,3′-Diaminobenzidine tetrahydrochloride

ROS:

Reactive oxygen species

ER:

Endoplasmic reticulum

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108

    Article  PubMed  Google Scholar 

  2. Sohda M, Kuwano H (2017) Current status and future prospects for esophageal cancer treatment. Ann Thorac Cardiovasc Surg 23:1–11

    Article  PubMed  Google Scholar 

  3. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J (2016) Cancer statistics in China, 2015. CA 66:115–132

    PubMed  Google Scholar 

  4. Chen W, Sun K, Zheng R, Zeng H, Zhang S, Xia C, Yang Z, Li H, Zou X, He J (2018) Cancer incidence and mortality in China, 2014. Chin J Cancer Res 30:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  5. Belkhiri A, El-Rifai W (2015) Advances in targeted therapies and new promising targets in esophageal cancer. Oncotarget 6:1348–1358

    Article  PubMed  PubMed Central  Google Scholar 

  6. Codipilly DC, Qin Y, Dawsey SM, Kisiel J, Topazian M, Ahlquist D, Iyer PG (2018) Screening for esophageal squamous cell carcinoma: recent advances. Gastrointest Endosc 88:413–426

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rustgi AK, El-Serag HB (2014) Esophageal carcinoma. N Engl J Med 371:2499–2509

    Article  CAS  PubMed  Google Scholar 

  8. Hall TM, Tetreault MP, Hamilton KE, Whelan KA (2018) Autophagy as a cytoprotective mechanism in esophageal squamous cell carcinoma. Curr Opin Pharmacol 41:12–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Selvaraju K, Mazurkiewicz M, Wang X, Gullbo J, Linder S, D’Arcy P (2015) Inhibition of proteasome deubiquitinase activity: a strategy to overcome resistance to conventional proteasome inhibitors? Drug Resist Updates 21–22:20–29

    Article  Google Scholar 

  10. de Poot SAH, Tian G, Finley D (2017) Meddling with fate: the proteasomal deubiquitinating enzymes. J Mol Biol 429:3525–3545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. D’Arcy P, Wang X, Linder S (2015) Deubiquitinase inhibition as a cancer therapeutic strategy. Pharmacol Ther 147:32–54

    Article  CAS  PubMed  Google Scholar 

  12. Chen YJ, Wu H, Shen XZ (2015) The ubiquitin-proteasome system and its potential application in hepatocellular carcinoma therapy. Cancer Lett 379:245–252

    Article  CAS  PubMed  Google Scholar 

  13. Wang Y, Wang J, Zhong J, Deng Y, Xi Q, He S, Yang S, Jiang L, Huang M, Tang C, Liu R (2015) Ubiquitin-specific protease 14 (USP14) regulates cellular proliferation and apoptosis in epithelial ovarian cancer. Med Oncol 32:379

    Article  CAS  PubMed  Google Scholar 

  14. Zhu L, Yang S, He S, Qiang F, Cai J, Liu R, Gu C, Guo Z, Wang C, Zhang W et al (2016) Downregulation of ubiquitin-specific protease 14 (USP14) inhibits breast cancer cell proliferation and metastasis, but promotes apoptosis. J Mol Histol 47:69–80

    Article  CAS  PubMed  Google Scholar 

  15. Zhu Y, Zhang C, Gu C, Li Q, Wu N (2016) Function of deubiquitinating enzyme USP14 as oncogene in different types of cancer. Cell Physiol Biochem 38:993–1002

    Article  CAS  PubMed  Google Scholar 

  16. Chen X, Wu J, Chen Y, Ye D, Lei H, Xu H, Yang L, Wu Y, Gu W (2016) Ubiquitin-specific protease 14 regulates cell proliferation and apoptosis in oral squamous cell carcinoma. Int J Biochem Cell Biol 79:350–359

    Article  CAS  PubMed  Google Scholar 

  17. Zhang B, Li M, Huang P, Guan XY, Zhu YH (2017) Overexpression of ubiquitin specific peptidase 14 predicts unfavorable prognosis in esophageal squamous cell carcinoma. Thorac Cancer 8:344–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vogel RI, Pulver T, Heilmann W, Mooneyham A, Mullany S, Zhao X, Shahi M, Richter J, Klein M, Chen L et al (2016) USP14 is a predictor of recurrence in endometrial cancer and a molecular target for endometrial cancer treatment. Oncotarget 7:30962–30976

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liao Y, Xia X, Liu N, Cai J, Guo Z, Li Y, Jiang L, Dou QP, Tang D, Huang H, Liu J (2018) Growth arrest and apoptosis induction in androgen receptor-positive human breast cancer cells by inhibition of USP14-mediated androgen receptor deubiquitination. Oncogene 37:1896–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang J, Zhang D, Sun L (2017) Knockdown of ubiquitin-specific protease 14 (USP14) inhibits the proliferation and tumorigenesis in esophageal squamous cell carcinoma cells. Oncol Res 25:249–257

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liao Y, Liu N, Hua X, Cai J, Xia X, Wang X, Huang H, Liu J (2017) Proteasome-associated deubiquitinase ubiquitin-specific protease 14 regulates prostate cancer proliferation by deubiquitinating and stabilizing androgen receptor. Cell Death Dis 8:e2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fang Y, Shen X (2017) Ubiquitin carboxyl-terminal hydrolases: involvement in cancer progression and clinical implications. Cancer Metastasis Rev 36:669–682

    Article  CAS  PubMed  Google Scholar 

  23. Chen Y, Fu D, Xi J, Ji Z, Liu T, Ma Y, Zhao Y, Dong L, Wang Q, Shen X (2012) Expression and clinical significance of UCH37 in human esophageal squamous cell carcinoma. Dig Dis Sci 57:2310–2317

    Article  CAS  PubMed  Google Scholar 

  24. Wang L, Chen YJ, Xu K, Wang YY, Shen XZ, Tu RQ (2014) High expression of UCH37 is significantly associated with poor prognosis in human epithelial ovarian cancer. Tumour Biol 35:11427–11433

    Article  CAS  PubMed  Google Scholar 

  25. Fang Y, Fu D, Tang W, Cai Y, Ma D, Wang H, Xue R, Liu T, Huang X, Dong L et al (2013) Ubiquitin C-terminal hydrolase 37, a novel predictor for hepatocellular carcinoma recurrence, promotes cell migration and invasion via interacting and deubiquitinating PRP19. Biochim Biophys Acta 1833:559–572

    Article  CAS  PubMed  Google Scholar 

  26. Zhou Z, Yao X, Pang S, Chen P, Jiang W, Shan Z, Zhang Q (2018) The deubiquitinase UCHL5/UCH37 positively regulates Hedgehog signaling by deubiquitinating Smoothened. J Mol Cell Biol 10:243–257

    Article  CAS  PubMed  Google Scholar 

  27. Randles L, Anchoori RK, Roden RB, Walters KJ (2016) The Proteasome ubiquitin receptor hRpn13 and its interacting deubiquitinating enzyme Uch37 are required for proper cell cycle progression. J Biol Chem 291:8773–8783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. D’Arcy P, Linder S (2014) Molecular pathways: translational potential of deubiquitinases as drug targets. Clin Cancer Res 20:3908–3914

    Article  CAS  PubMed  Google Scholar 

  29. Popovic D, Vucic D, Dikic I (2014) Ubiquitination in disease pathogenesis and treatment. Nat Med 20:1242–1253

    Article  CAS  PubMed  Google Scholar 

  30. Pal A, Young MA, Donato NJ (2014) Emerging potential of therapeutic targeting of ubiquitin-specific proteases in the treatment of cancer. Cancer Res 74:4955–4966

    Article  CAS  PubMed  Google Scholar 

  31. Crosas B (2014) Deubiquitinating enzyme inhibitors and their potential in cancer therapy. Curr Cancer Drug Targets 14:506–516

    Article  CAS  PubMed  Google Scholar 

  32. D’Arcy P, Brnjic S, Olofsson MH, Fryknäs M, Lindsten K, De Cesare M, Perego P, Sadeghi B, Hassan M, Larsson R, Linder S (2011) Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat Med 17:1636–1640

    Article  CAS  PubMed  Google Scholar 

  33. Tian Z, D’Arcy P, Wang X, Ray A, Tai YT, Hu Y, Carrasco RD, Richardson P, Linder S, Chauhan D, Anderson KC (2014) A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance. Blood 123:706–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cai J, Xia X, Liao Y, Liu N, Guo Z, Chen J, Yang L, Long H, Yang Q, Zhang X et al (2017) A novel deubiquitinase inhibitor b-AP15 triggers apoptosis in both androgen receptor-dependent and -independent prostate cancers. Oncotarget 8:63232–63246

    PubMed  PubMed Central  Google Scholar 

  35. Oh YT, Deng L, Deng J, Sun SY (2017) The proteasome deubiquitinase inhibitor b-AP15 enhances DR5 activation-induced apoptosis through stabilizing DR5. Sci Rep 7:8027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kropp KN, Maurer S, Rothfelder K, Schmied BJ, Clar KL, Schmidt M, Strunz B, Kopp HG, Steinle A, Grunebach F et al (2018) The novel deubiquitinase inhibitor b-AP15 induces direct and NK cell-mediated antitumor effects in human mantle cell lymphoma. Cancer Immunol Immunother 67:935–947

    Article  CAS  PubMed  Google Scholar 

  37. Sarhan D, D’Arcy P, Lundqvist A (2014) Regulation of TRAIL-receptor expression by the ubiquitin-proteasome system. Int J Mol Sci 15:18557–18573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sarhan D, Wennerberg E, D’Arcy P, Gurajada D, Linder S, Lundqvist A (2013) A novel inhibitor of proteasome deubiquitinating activity renders tumor cells sensitive to TRAIL-mediated apoptosis by natural killer cells and T cells. Cancer Immunol Immunother 62:1359–1368

    Article  CAS  PubMed  Google Scholar 

  39. Chen P, Hu T, Liang Y, Li P, Chen X, Zhang J, Ma Y, Hao Q, Wang J, Zhang P et al (2016) Neddylation inhibition activates the extrinsic apoptosis pathway through ATF4-CHOP-DR5 axis in human esophageal cancer cells. Clin Cancer Res 22:4145–4157

    Article  CAS  PubMed  Google Scholar 

  40. Hao Q, Zhao X, Zhang Y, Dong Z, Hu T, Chen P (2017) Targeting overexpressed activating transcription factor 1 (ATF1) inhibits proliferation and migration and enhances sensitivity to paclitaxel in esophageal cancer cells. Med Sci Monit Basic Res 23:304–312

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen P, Li M, Hao Q, Zhao X, Hu T (2018) Targeting the overexpressed CREB inhibits esophageal squamous cell carcinoma cell growth. Oncol Rep 39:1369–1377

    CAS  PubMed  Google Scholar 

  42. Hu T, Zhang J, Sha B, Li M, Wang L, Zhang Y, Liu X, Dong Z, Liu Z, Li P, Chen P (2018) Targeting the overexpressed USP7 inhibits esophageal squamous cell carcinoma cell growth by inducing NOXA-mediated apoptosis. Mol Carcinog 58(1):42–54

    Article  CAS  PubMed  Google Scholar 

  43. Lin S, Shang Z, Li S, Gao P, Zhang Y, Hou S, Qin P, Dong Z, Hu T, Chen P (2018) Neddylation inhibitor MLN4924 induces G2 cell cycle arrest, DNA damage and sensitizes esophageal squamous cell carcinoma cells to cisplatin. Oncol Lett 15:2583–2589

    PubMed  Google Scholar 

  44. Yeasmin Khusbu F, Chen FZ, Chen HC (2018) Targeting ubiquitin specific protease 7 in cancer: a deubiquitinase with great prospects. Cell Biochem Funct 36:244–254

    Article  CAS  PubMed  Google Scholar 

  45. Jin WL, Mao XY, Qiu GZ (2017) Targeting deubiquitinating enzymes in glioblastoma multiforme: expectations and challenges. Med Res Rev 37:627–661

    Article  CAS  PubMed  Google Scholar 

  46. Ding Y, Chen X, Wang B, Yu B, Ge J (2018) Deubiquitinase inhibitor b-AP15 activates endoplasmic reticulum (ER) stress and inhibits Wnt/Notch1 signaling pathway leading to the reduction of cell survival in hepatocellular carcinoma cells. Eur J Pharmacol 825:10–18

    Article  CAS  PubMed  Google Scholar 

  47. Feng X, Holmlund T, Zheng C, Fadeel B (2014) Proapoptotic effects of the novel proteasome inhibitor b-AP15 on multiple myeloma cells and natural killer cells. Exp Hematol 42:172–182

    Article  CAS  PubMed  Google Scholar 

  48. Vogel RI, Coughlin K, Scotti A, Iizuka Y, Anchoori R, Roden RB, Marastoni M, Bazzaro M (2015) Simultaneous inhibition of deubiquitinating enzymes (DUBs) and autophagy synergistically kills breast cancer cells. Oncotarget 6:4159–4170

    Article  PubMed  PubMed Central  Google Scholar 

  49. Aleo E, Henderson CJ, Fontanini A, Solazzo B, Brancolini C (2006) Identification of new compounds that trigger apoptosome-independent caspase activation and apoptosis. Cancer Res 66:9235–9244

    Article  CAS  PubMed  Google Scholar 

  50. Brnjic S, Mazurkiewicz M, Fryknäs M, Sun C, Zhang X, Larsson R, D’Arcy P, Linder S (2014) Induction of tumor cell apoptosis by a proteasome deubiquitinase inhibitor is associated with oxidative stress. Antioxid Redox Signal 21:2271–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Knorr KLB, Schneider PA, Meng XW, Dai H, Smith BD, Hess AD, Karp JE, Kaufmann SH (2015) MLN4924 induces Noxa upregulation in acute myelogenous leukemia and synergizes with Bcl-2 inhibitors. Cell Death Differ 22:2133–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wirth M, Stojanovic N, Christian J, Paul MC, Stauber RH, Schmid RM, Hacker G, Kramer OH, Saur D, Schneider G (2014) MYC and EGR1 synergize to trigger tumor cell death by controlling NOXA and BIM transcription upon treatment with the proteasome inhibitor bortezomib. Nucleic Acids Res 42:10433–10447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

And the authors would also like to thank those who contributed their tissue samples to support scientific research in medical fields.

Funding

This research was funded by the National Natural Science Foundation Grant of China (Grant Nos. 81001102, 81101894, 81672421, U1604189), Natural Science Foundation of Henan Province (Grant No. 162300410302), Outstanding Young Talent Research Fund of Zhengzhou University (Grant Nos. 51999223, 32210449) and Program for Science &Technology Innovation Talents in Universities of Henan Province (Grant No. 18HASTIT046).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Tao Hu and Pei Li; Methodology, Beibei Sha, Xiaoyu Chen, Miaomiao Li and Longhao Wang; Validation, Beibei Sha, Xiaoyu Chen, Miaomiao Li, Longhao Wang and Han Wu; Results interpretation, Beibei Sha, Xiaoyu Chen, Miaomiao Li and Xingge Liu; Manuscript preparation: Ping Chen and Jianxiang Shi; Supervision, Tao Hu and Pei Li; Project administration, Tao Hu and Pei Li; Funding acquisition, Ping Chen, Tao Hu and Pei Li.

Corresponding authors

Correspondence to Tao Hu or Pei Li.

Ethics declarations

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Ethical approval

All experiments were approved by the Institutional Review Board of Zhengzhou University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10495_2019_1561_MOESM1_ESM.pdf

Supplementary material 1 (PDF 1176 kb) Supplementary Figure. The effect of c-Myc on the accumulation of polyubiquitin. After transfected with the control siRNA, or c-Myc siRNA for 96 h, cell proteins were collected and knockdown efficiency and the effect of c-Myc on the accumulation of polyubiquitin were assessed by western blot analysis. GAPDH was used as loading control

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sha, B., Chen, X., Wu, H. et al. Deubiquitylatinase inhibitor b-AP15 induces c-Myc-Noxa-mediated apoptosis in esophageal squamous cell carcinoma. Apoptosis 24, 826–836 (2019). https://doi.org/10.1007/s10495-019-01561-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-019-01561-9

Keywords

Navigation