Skip to main content
Log in

Inhibition of SIRT1/2 upregulates HSPA5 acetylation and induces pro-survival autophagy via ATF4-DDIT4-mTORC1 axis in human lung cancer cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Sirtuins have emerged as a promising novel class of anti-cancer drug targets. Inhibition of SIRT1 and SIRT2 induces apoptosis in cancer cells and they play multifaceted roles in regulating autophagy. In the present study, we found that salermide, a SIRT1/2-specific inhibitor or small interfering RNAs (siRNAs) to block SIRT1/2 expression could induce autophagy in human NSCLC cells. Moreover, SIRT1/2 inhibition increased the expression levels of ATF4 and DDIT4 and downregulated p-RPS6KB1 and p-EIF4EBP1, two downstream molecules of mTORC1. Moreover, ATF4 or DDIT4 knockdown attenuated salermide-induced autophagy, suggesting that SIRT1/2 inhibition induced autophagy through the ATF4-DDIT4-mTORC1 axis. Mechanistically, SIRT1/2 inhibition led to HSPA5 acetylation and dissociation from EIF2AK3, leading to ER stress response and followed by upregulation of ATF4 and DDIT4, triggering autophagy. Silencing of the autophagic gene ATG5 in lung cancer cells resulted in increased apoptotic cell death induced by SIRT1/2 inhibition. Our data show that inhibition of SIRT1/2 induces pro-survival autophagy via acetylation of HSPA5 and subsequent activation of ATF4 and DDIT4 to inhibit the mTOR signaling pathway in NSCLC cells. These findings suggest that combinatorial treatment with SIRT1/2 inhibitors and pharmacological autophagy inhibitors is an effective therapeutic strategy for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

NSCLC:

Non-small cell lung cancer

SLM:

Salermide

MAP1LC3B:

Microtubule-associated proteins 1A/1B light chain 3B

mTOR:

Mechanistic target of rapamycin

mTORC1:

Mechanistic target of rapamycin complex 1

UPR:

Unfolded protein response

PI3K:

Phosphoinositide-3 kinase

RPS6KB1:

70-kDa ribosomal protein S6 kinase beta-1

EIF4EBP1:

Eukaryotic translation initiation factor 4E-binding protein 1

ATF4:

Activating transcription factor 4

DDIT4:

DNA-damage-inducible transcript 4

SIRT1:

Sirtuin 1

SIRT2:

Sirtuin 2

HSPA5:

Heat shock 70-kDa protein 5

EIF2AK3:

Eukaryotic translation initiation factor 2-alpha kinase 3

SBD:

Substrate binding domain

CASP3:

Caspase 3: apoptosis-related cysteine peptidase

CASP8:

Caspase 8: apoptosis-related cysteine peptidase

PARP1:

Poly (ADP-ribose) polymerase 1

References

  1. Villalba JM, Alcain FJ (2012) Sirtuin activators and inhibitors. BioFactors 38:349–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Herranz D, Munoz-Martin M, Canamero M, Mulero F, Martinez-Pastor B, Fernandez-Capetillo O et al (2010) Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun 1:3

    Article  CAS  PubMed  Google Scholar 

  3. Firestein R, Blander G, Michan S, Oberdoerffer P, Ogino S, Campbell J et al (2008) The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS ONE 3:e2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hall JA, Dominy JE, Lee Y, Puigserver P (2013) The sirtuin family’s role in aging and age-associated pathologies. J Clin Investig 123:973–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dryden SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA (2003) Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol 23:3173–3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim HS, Vassilopoulos A, Wang RH, Lahusen T, Xiao Z, Xu X et al (2011) SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell 20:487–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jin YH, Kim YJ, Kim DW, Baek KH, Kang BY, Yeo CY et al (2008) Sirt2 interacts with 14-3-3 beta/gamma and down-regulates the activity of p53. Biochem Biophys Res Commun 368:690–695

    Article  CAS  PubMed  Google Scholar 

  8. Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK et al (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149–159

    Article  CAS  PubMed  Google Scholar 

  9. Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A et al (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107:137–148

    Article  CAS  PubMed  Google Scholar 

  10. Chen J, Zhang B, Wong N, Lo AW, To KF, Chan AW et al (2011) Sirtuin 1 is upregulated in a subset of hepatocellular carcinomas where it is essential for telomere maintenance and tumor cell growth. Cancer Res 71:4138–4149

    Article  CAS  PubMed  Google Scholar 

  11. Elangovan S, Ramachandran S, Venkatesan N, Ananth S, Gnana-Prakasam JP, Martin PM et al (2011) SIRT1 is essential for oncogenic signaling by estrogen/estrogen receptor alpha in breast cancer. Cancer Res 71:6654–6664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marshall GM, Liu PY, Gherardi S, Scarlett CJ, Bedalov A, Xu N et al (2011) SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability. PLoS Genet 7:e1002135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ota H, Tokunaga E, Chang K, Hikasa M, Iijima K, Eto M et al (2006) Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene 25:176–185

    Article  CAS  PubMed  Google Scholar 

  14. Liu G, Su L, Hao X, Zhong N, Zhong D, Singhal S et al (2012) Salermide up-regulates death receptor 5 expression through the ATF4-ATF3-CHOP axis and leads to apoptosis in human cancer cells. J Cell Mol Med 16:1618–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B et al (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305:390–392

    Article  CAS  PubMed  Google Scholar 

  16. Lara E, Mai A, Calvanese V, Altucci L, Lopez-Nieva P, Martinez-Chantar ML et al (2009) Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect. Oncogene 28:781–791

    Article  CAS  PubMed  Google Scholar 

  17. Hwang JW, Chung S, Sundar IK, Yao H, Arunachalam G, McBurney MW et al (2010) Cigarette smoke-induced autophagy is regulated by SIRT1-PARP-1-dependent mechanism: implication in pathogenesis of COPD. Arch Biochem Biophys 500:203–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zeng R, Chen Y, Zhao S, Cui GH (2012) Autophagy counteracts apoptosis in human multiple myeloma cells exposed to oridonin in vitro via regulating intracellular ROS and SIRT1. Acta Pharmacol Sin 33:91–100

    Article  CAS  PubMed  Google Scholar 

  19. Jang SY, Kang HT, Hwang ES (2012) Nicotinamide-induced mitophagy: event mediated by high NAD+/NADH ratio and SIRT1 protein activation. J Biol Chem 287:19304–19314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kume S, Uzu T, Horiike K, Chin-Kanasaki M, Isshiki K, Araki S et al (2010) Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest 120:1043–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao Y, Yang J, Liao W, Liu X, Zhang H, Wang S et al (2010) Cytosolic FoxO1 is essential for the induction of autophagy and tumor suppressor activity. Nat Cell Biol 12:665–675

    Article  CAS  PubMed  Google Scholar 

  22. Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146:682–695

    Article  CAS  PubMed  Google Scholar 

  23. Zhao Y, Xiong X, Jia L, Sun Y (2012) Targeting Cullin-RING ligases by MLN4924 induces autophagy via modulating the HIF1-REDD1-TSC1-mTORC1-DEPTOR axis. Cell Death Dis 3:e386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Molitoris JK, McColl KS, Swerdlow S, Matsuyama M, Lam M, Finkel TH et al (2011) Glucocorticoid elevation of dexamethasone-induced gene 2 (Dig2/RTP801/REDD1) protein mediates autophagy in lymphocytes. J Biol Chem 286:30181–30189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Whitney ML, Jefferson LS, Kimball SR (2009) ATF4 is necessary and sufficient for ER stress-induced upregulation of REDD1 expression. Biochem Biophys Res Commun 379:451–455

    Article  CAS  PubMed  Google Scholar 

  26. Rzymski T, Milani M, Pike L, Buffa F, Mellor HR, Winchester L et al (2010) Regulation of autophagy by ATF4 in response to severe hypoxia. Oncogene 29:4424–4435

    Article  CAS  PubMed  Google Scholar 

  27. Rzymski T, Milani M, Singleton DC, Harris AL (2009) Role of ATF4 in regulation of autophagy and resistance to drugs and hypoxia. Cell Cycle 8:3838–3847

    Article  CAS  PubMed  Google Scholar 

  28. Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K et al (2010) The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest 120:127–141

    Article  CAS  PubMed  Google Scholar 

  29. Jiang Q, Li F, Shi K, Wu P, An J, Yang Y et al (2013) ATF4 activation by the p38MAPK-eIF4E axis mediates apoptosis and autophagy induced by selenite in Jurkat cells. FEBS Lett 587:2420–2429

    Article  CAS  PubMed  Google Scholar 

  30. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939

    Article  CAS  PubMed  Google Scholar 

  31. Lee JS, Li Q, Lee JY, Lee SH, Jeong JH, Lee HR et al (2009) FLIP-mediated autophagy regulation in cell death control. Nat Cell Biol 11:1355–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  CAS  PubMed  Google Scholar 

  33. Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306:990–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li T, Su L, Zhong N, Hao X, Zhong D, Singhal S et al (2013) Salinomycin induces cell death with autophagy through activation of endoplasmic reticulum stress in human cancer cells. Autophagy 9(7):1057–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu X, Yue P, Zhou Z, Khuri FR, Sun SY (2004) Death receptor regulation and celecoxib-induced apoptosis in human lung cancer cells. J Natl Cancer Inst 96:1769–1780

    Article  CAS  PubMed  Google Scholar 

  37. Maiese K, Chong ZZ, Shang YC, Wang S (2013) mTOR: on target for novel therapeutic strategies in the nervous system. Trends Mol Med 19:51–60

    Article  CAS  PubMed  Google Scholar 

  38. DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW (2008) Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev 22:239–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rao R, Nalluri S, Kolhe R, Yang Y, Fiskus W, Chen J et al (2010) Treatment with panobinostat induces glucose-regulated protein 78 acetylation and endoplasmic reticulum stress in breast cancer cells. Mol Cancer Ther 9:942–952

    Article  CAS  PubMed  Google Scholar 

  40. Kahali S, Sarcar B, Fang B, Williams ES, Koomen JM, Tofilon PJ et al (2010) Activation of the unfolded protein response contributes toward the antitumor activity of vorinostat. Neoplasia 12:80–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen HY, White E (2011) Role of autophagy in cancer prevention. Cancer Prev Res (Phila) 4:973–983

    Article  CAS  Google Scholar 

  42. Tee AR, Blenis J (2005) mTOR, translational control and human disease. Semin Cell Dev Biol 16:29–37

    Article  CAS  PubMed  Google Scholar 

  43. Jin HO, Seo SK, Kim YS, Woo SH, Lee KH, Yi JY et al (2011) TXNIP potentiates Redd1-induced mTOR suppression through stabilization of Redd1. Oncogene 30:3792–3801

    Article  CAS  PubMed  Google Scholar 

  44. Maskey D, Yousefi S, Schmid I, Zlobec I, Perren A, Friis R et al (2013) ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy. Nat Commun 4:2130

    Article  CAS  PubMed  Google Scholar 

  45. Pyo JO, Yoo SM, Ahn HH, Nah J, Hong SH, Kam TI et al (2013) Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat Commun 4:2300

    Article  CAS  PubMed  Google Scholar 

  46. Comincini S, Allavena G, Palumbo S, Morini M, Durando F, Angeletti F et al (2013) microRNA-17 regulates the expression of ATG7 and modulates the autophagy process, improving the sensitivity to temozolomide and low-dose ionizing radiation treatments in human glioblastoma cells. Cancer Biol Ther 14:574–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Desai S, Liu Z, Yao J, Patel N, Chen J, Wu Y et al (2013) Heat shock factor 1 (HSF1) controls chemoresistance and autophagy through transcriptional regulation of autophagy-related protein 7 (ATG7). J Biol Chem 288:9165–9176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Amaravadi RK, Lippincott-Schwartz J, Yin XM, Weiss WA, Takebe N, Timmer W et al (2011) Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res 17:654–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu SZ, Harrison-Findik DD (2013) Autophagy and cancer. World J Biol Chem 4:64–70

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kang X, Yang W, Wang R, Xie T, Li H, Feng D et al (2018) Sirtuin-1 (SIRT1) stimulates growth-plate chondrogenesis by attenuating the PERK-eIF-2α-CHOP pathway in the unfolded protein response. J Biol Chem 293:8614–8625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chang YW, Tseng CF, Wang MY, Chang WC, Lee CC, Chen LT et al (2016) Deacetylation of HSPA5 by HDAC6 leads to GP78-mediated HSPA5 ubiquitination at K447 and suppresses metastasis of breast cancer. Oncogene 35:1517–1528

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Natural Science Foundation of China (81672855, 31571422, 31771526, 81472686) and Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology (SPKLACDB-2019017 and SPKLACDB-2019012). We thank Haiyan Yu, Xiaomin Zhao and Sen Wang from SKLMT (State Key Laboratory of Microbial Technology, Shandong University) for the assistance in microimaging of LSCM analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangguo Liu or Ling Su.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, N., Lei, Y., Wang, Y. et al. Inhibition of SIRT1/2 upregulates HSPA5 acetylation and induces pro-survival autophagy via ATF4-DDIT4-mTORC1 axis in human lung cancer cells. Apoptosis 24, 798–811 (2019). https://doi.org/10.1007/s10495-019-01559-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-019-01559-3

Keywords

Navigation