Advertisement

Apoptosis

, Volume 24, Issue 9–10, pp 687–702 | Cite as

Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins

  • Anatoly B. UzdenskyEmail author
Review

Abstract

Ischemic stroke is the leading cause of human disability and mortality in the world. The main problem in stroke therapy is the search of efficient neuroprotector capable to rescue neurons in the potentially salvageable transition zone (penumbra), which is expanding after brain damage. The data on molecular mechanisms of penumbra formation and expression of diverse signaling proteins in the penumbra during first 24 h after ischemic stroke are discussed. Two basic features of cell death regulation in the ischemic penumbra were observed: (1) both apoptotic and anti-apoptotic proteins are simultaneously over-expressed in the penumbra, so that the fate of individual cells is determined by the balance between these opposite tendencies. (2) Similtaneous and concerted up-regulation in the ischemic penumbra of proteins that execute apoptosis (caspases 3, 6, 7; Bcl-10, SMAC/DIABLO, AIF, PSR), signaling proteins that regulate different apoptosis pathways (p38, JNK, DYRK1A, neurotrophin receptor p75); transcription factors that control expression of various apoptosis regulation proteins (E2F1, p53, c-Myc, GADD153); and proteins, which are normally involved in diverse cellular functions, but stimulate apoptosis in specific situations (NMDAR2a, Par4, GAD65/67, caspase 11). Hence, diverse apoptosis initiation and regulation pathways are induced simultaneously in penumbra from very different initial positions. Similarly, various anti-apoptotic proteins (Bcl-x, p21/WAF-1, MDM2, p63, PKBα, ERK1, RAF1, ERK5, MAKAPK2, protein phosphatases 1α and MKP-1, estrogen and EGF receptors, calmodulin, CaMKII, CaMKIV) are upregulated. These data provide an integral view of neurodegeneration and neuroprotection in penumbra. Some discussed proteins may serve as potential targets for anti-stroke therapy.

Keywords

Apoptosis Stroke Penumbra Protein expression Signaling Neurodegeneration 

Notes

Acknowledgements

The work was supported by the Russian Science Foundation (Grant # 18-15-00110).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Iadecola C, Anrather J (2011) Stroke research at a crossroad: asking the brain for directions. Nat Neurosci 14:1363–1368.  https://doi.org/10.1038/nn.2953 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hankey GJ (2017) Stroke. Lancet 389:641–654.  https://doi.org/10.1016/S0140-6736(16)30962-X CrossRefPubMedGoogle Scholar
  3. 3.
    Mehta SL, Manhas N, Raghubir R (2007) Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 4:34–66.  https://doi.org/10.1016/j.brainresrev.2006.11.003 CrossRefGoogle Scholar
  4. 4.
    Puyal J, Ginet V, Clarke PG (2013) Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: a challenge for neuroprotection. Prog Neurobiol 105:24–48.  https://doi.org/10.1016/j.pneurobio.2013.03.002 CrossRefPubMedGoogle Scholar
  5. 5.
    Majid A (2014) Neuroprotection in stroke: past, present, and future. ISRN Neurol.  https://doi.org/10.1155/2014/515716 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Min J, Farooq MU, Gorelick PB (2013) Neuroprotective agents in ischemic stroke: past failures and future opportunities. Clin Investig 3:1167–1177.  https://doi.org/10.4155/cli.13.91 CrossRefGoogle Scholar
  7. 7.
    Karsy M, Brock A, Guan J, Taussky P, Kalani MY, Park MS (2017) Neuroprotective strategies and the underlying molecular basis of cerebrovascular stroke. Neurosurg Focus 42:E3.  https://doi.org/10.3171/2017.1.FOCUS16522 CrossRefPubMedGoogle Scholar
  8. 8.
    Auriel E, Bornstein NM (2010) Neuroprotection in acute ischemic stroke—current status. J Cell Mol Med 14:2200–2202.  https://doi.org/10.1111/j.1582-4934.2010.01135.x CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rajah GB, Ding Y (2017) Experimental neuroprotection in ischemic stroke: a concise review. Neurosurg Focus 42:E2.  https://doi.org/10.3171/2017.1.FOCUS16497 CrossRefPubMedGoogle Scholar
  10. 10.
    Broughton BR, Reutens DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40:e331–e339.  https://doi.org/10.1161/STROKEAHA.108.531632 CrossRefPubMedGoogle Scholar
  11. 11.
    Onténiente B, Couriaud C, Braudeau J, Benchoua A, Guégan C (2003) The mechanisms of cell death in focal cerebral ischemia highlight neuroprotective perspectives by anti-caspase therapy. Biochem Pharmacol 66:1643–1649CrossRefPubMedGoogle Scholar
  12. 12.
    Yao H, Takasawa R, Fukuda K, Shiokawa D, Sadanaga-Akiyoshi F, Ibayashi S, Tanuma S, Uchimura H (2001) DNA fragmentation in ischemic core and penumbra in focal cerebral ischemia in rats. Brain Res Mol Brain Res 91:112–118CrossRefPubMedGoogle Scholar
  13. 13.
    Benchoua A, Guégan C, Couriaud C, Hosseini H, Sampaïo N, Morin D, Onténiente B (2001) Specific caspase pathways are activated in the two stages of cerebral infarction. J Neurosci 21:7127–7134CrossRefPubMedGoogle Scholar
  14. 14.
    Wei L, Ying DJ, Cui L, Langsdorf J, Yu SP (2004) Necrosis, apoptosis and hybrid death in the cortex and thalamus after barrel cortex ischemia in rats. Brain Res 1022:54–61CrossRefPubMedGoogle Scholar
  15. 15.
    Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC (2018) Neuronal cell death. Physiol Rev 98:813–880.  https://doi.org/10.1152/physrev.00011.2017 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fluri F, Schuhmann MK, Kleinschnitz C (2015) Animal models of ischemic stroke and their application in clinical research. Drug Des Dev Ther 9:3445–3454.  https://doi.org/10.2147/DDDT.S56071 CrossRefGoogle Scholar
  17. 17.
    Mergenthaler P, Meisel A (2012) Do stroke models model stroke? Dis Model Mech 5:718–725.  https://doi.org/10.1242/dmm.010033 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sommer CJ (2017) Ischemic stroke: experimental models and reality. Acta Neuropathol 133:245–261.  https://doi.org/10.1007/s00401-017-1667-0 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Krafft PR, Bailey EL, Lekic T, Rolland WB, Altay O, Tang J, Wardlaw JM, Zhang JH, Sudlow CL (2012) Etiology of stroke and choice of models. Int J Stroke 7:398–406.  https://doi.org/10.1111/j.1747-4949.2012.00838.x CrossRefPubMedGoogle Scholar
  20. 20.
    Uzdensky AB (2017) Photothrombotic stroke as a model of ischemic stroke. Transl Stroke Res.  https://doi.org/10.1007/s12975-017-0593-8 CrossRefPubMedGoogle Scholar
  21. 21.
    Watson BD, Dietrich WD, Busto R, Wachtel MS, Ginsberg MD (1985) Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol 17:497–504CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yang S, Liu K, Ding H, Gao H, Zheng X, Ding Z, Xu K, Li P (2018) Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model. J Cereb Blood Flow Metab.  https://doi.org/10.1177/0271678x18762636 CrossRefPubMedGoogle Scholar
  23. 23.
    Pevsner PH, Eichenbaum JW, Miller DC, Pivawer G, Eichenbaum KD, Stern A, Zakian KL, Koutcher JA (2001) A photothrombotic model of small early ischemic infarcts in the rat brain with histologic and MRI correlation. J Pharmacol Toxicol Methods 45:227–233CrossRefPubMedGoogle Scholar
  24. 24.
    Choi DW (1992) Excitotoxic cell death. J Neurobiol 23:1261–1276CrossRefPubMedGoogle Scholar
  25. 25.
    Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460:525–542.  https://doi.org/10.1007/s00424-010-0809-1 CrossRefPubMedGoogle Scholar
  26. 26.
    Arundine M, Tymianski M (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34:325–337CrossRefPubMedGoogle Scholar
  27. 27.
    Berliocchi L, Bano D, Nicotera P (2005) Ca2+ signals and death programmes in neurons. Philos Trans R Soc Lond B Biol Sci 360:2255–2258.  https://doi.org/10.1098/rstb.2005.1765 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Brini M, Calì T, Ottolini D, Carafoli E (2014) Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci 71:2787–2814.  https://doi.org/10.1007/s00018-013-1550-7 CrossRefPubMedGoogle Scholar
  29. 29.
    Clapham DE (2007) Calcium signaling. Cell 131:1047–1058.  https://doi.org/10.1016/j.cell.2007.11.028 CrossRefPubMedGoogle Scholar
  30. 30.
    Abramov AY, Scorziello A, Duchen MR (2007) Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci 27:1129–1138.  https://doi.org/10.1523/JNEUROSCI.4468-06.2007 CrossRefPubMedGoogle Scholar
  31. 31.
    Allen CL, Bayraktutan U (2009) Oxidative stress and its role in the pathogenesis of ischemic stroke. Int J Stroke 4:461–470.  https://doi.org/10.1111/j.1747-4949.2009.00387.x CrossRefPubMedGoogle Scholar
  32. 32.
    Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P, Goeders CE, Chan PH (2011) Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 14:1505–1517.  https://doi.org/10.1089/ars.2010.3576 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Garry PS, Ezra M, Rowland MJ, Westbrook J, Pattinson KT (2015) The role of the nitric oxide pathway in brain injury and its treatment–from bench to bedside. Exp Neurol 263:235–243.  https://doi.org/10.1016/j.expneurol.2014.10.017 CrossRefPubMedGoogle Scholar
  34. 34.
    Rami A, Bechmann I, Stehle JH (2008) Exploiting endogenous anti-apoptotic proteins for novel therapeutic strategies in cerebral ischemia. Prog Neurobiol 85:273–296.  https://doi.org/10.1016/j.pneurobio.2008.04.003 CrossRefPubMedGoogle Scholar
  35. 35.
    Guo MF, Yu JZ, Ma CG (2011) Mechanisms related to neuron injury and death in cerebral hypoxic ischaemia. Folia Neuropathol 49:78–87PubMedGoogle Scholar
  36. 36.
    Irving EA, Bamford M (2002) Role of mitogen- and stress-activated kinases in ischemic injury. J Cereb Blood Flow Metab 22:631–647CrossRefPubMedGoogle Scholar
  37. 37.
    Shen HM, Liu ZG (2006) JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med 40:928–939.  https://doi.org/10.1016/j.freeradbiomed.2005.10.056 CrossRefPubMedGoogle Scholar
  38. 38.
    Colasanti M, Suzuki H (2000) The dual personality of NO. Trends Pharmacol Sci 21:249–252CrossRefPubMedGoogle Scholar
  39. 39.
    Liu C, Zhang K, Shen H, Yao X, Sun Q, Chen G (2018) Necroptosis: a novel manner of cell death, associated with stroke (Review). Int J Mol Med 41:624–630.  https://doi.org/10.3892/ijmm.2017.3279 CrossRefPubMedGoogle Scholar
  40. 40.
    Hribljan V, Lisjak D, Petrović DJ, Mitrečić D (2019) Necroptosis is one of the modalities of cell death accompanying ischemic brain stroke: from pathogenesis to therapeutic possibilities. Croat Med J 60:121–126CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Linnik MD (1996) Role of apoptosis in acute neurodegenerative disorders. Restor Neurol Neurosci 9:219–225.  https://doi.org/10.3233/RNN-1996-9404 CrossRefPubMedGoogle Scholar
  42. 42.
    Radak D, Katsiki N, Resanovic I, Jovanovic A, Sudar-Milovanovic E, Zafirovic S, Mousad SA, Isenovic ER (2017) Apoptosis and acute brain ischemia in ischemic stroke. Curr Vasc Pharmacol 15:115–122.  https://doi.org/10.2174/1570161115666161104095522 CrossRefPubMedGoogle Scholar
  43. 43.
    Ferrer I (2006) Apoptosis: future targets for neuroprotective strategies. 21. Cerebrovasc Dis 21(Suppl 2):9–20.  https://doi.org/10.1159/000091699 CrossRefPubMedGoogle Scholar
  44. 44.
    Nakka VP, Gusain A, Mehta SL, Raghubir R (2008) Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol Neurobiol 37:7–38CrossRefPubMedGoogle Scholar
  45. 45.
    Ferrer I, Friguls B, Dalfó E, Justicia C, Planas AM (2003) Caspase-dependent and caspase-independent signalling of apoptosis in the penumbra following middle cerebral artery occlusion in the adult rat. Neuropathol Appl Neurobiol 29:472–481CrossRefPubMedGoogle Scholar
  46. 46.
    Krupinski J, Slevin M, Marti E, Catena E, Rubio F, Gaffney J (2003) Time-course phosphorylation of the mitogen activated protein (MAP) kinase group of signalling proteins and related molecules following middle cerebral artery occlusion (MCAO) in rats. Neuropathol Appl Neurobiol 29:144–158CrossRefPubMedGoogle Scholar
  47. 47.
    Demyanenko S, Uzdensky A (2017) Profiling of signaling proteins in penumbra after focal photothrombotic infarct in the rat brain cortex. Mol Neurobiol 54:6839–6856.  https://doi.org/10.1007/s12035-016-0191-x CrossRefPubMedGoogle Scholar
  48. 48.
    Krupinski J, Lopez E, Marti E, Ferrer I (2000) Expression of caspases and their substrates in the rat model of focal cerebral ischemia. Neurobiol Dis 7:332–342CrossRefPubMedGoogle Scholar
  49. 49.
    Li F, Omori N, Sato K, Jin G, Nagano I, Manabe Y, Shoji M, Abe K (2002) Coordinate expression of survival p-ERK and proapoptotic cytochrome c signals in rat brain neurons after transient MCAO. Brain Res 958:83–88CrossRefPubMedGoogle Scholar
  50. 50.
    Ferrer I, Planas AM (2003) Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J Neuropathol Exp Neurol 62:329–339CrossRefPubMedGoogle Scholar
  51. 51.
    Althaus J, Siegelin MD, Dehghani F, Cilenti L, Zervos AS, Rami A (2007) The serine protease Omi/HtrA2 is involved in XIAP cleavage and in neuronal cell death following focal cerebral ischemia/reperfusion. Neurochem Int 50:172–180.  https://doi.org/10.1016/j.neuint.2006.07.018 CrossRefPubMedGoogle Scholar
  52. 52.
    Saito A, Hayashi T, Okuno S, Ferrand-Drake M, Chan PH (2003) Interaction between XIAP and Smac/DIABLO in the mouse brain after transient focal cerebral ischemia. J Cereb Blood Flow Metab 23:1010–1019CrossRefPubMedGoogle Scholar
  53. 53.
    Nishioka T, Nakase H, Nakamura M, Konishi N, Sakaki T (2006) Sequential and spatial profiles of apoptosis in ischemic penumbra after two-vein occlusion in rats. J Neurosurg 104:938–944.  https://doi.org/10.3171/jns.2006.104.6.938 CrossRefPubMedGoogle Scholar
  54. 54.
    Jin K, Mao XO, Eshoo MW, Nagayama T, Minami M, Simon RP, Greenberg DA (2001) Microarray analysis of hippocampal gene expression in global cerebral ischemia. Ann Neurol 50:93–103CrossRefPubMedGoogle Scholar
  55. 55.
    Lu A, Tang Y, Ran R, Clark JF, Aronow BJ, Sharp FR (2003) Genomics of the periinfarction cortex after focal cerebral ischemia. J Cereb Blood Flow Metab 23:786–810CrossRefPubMedGoogle Scholar
  56. 56.
    Kopf E, Zharhary D (2007) Antibody arrays—An emerging tool in cancer proteomics. Int J Biochem Cell Biol 39:1305–1317.  https://doi.org/10.1016/j.biocel.2007.04.029 CrossRefPubMedGoogle Scholar
  57. 57.
    Borrebaeck CA, Wingren C (2014) Antibody array generation and use. Methods Mol Biol 1131:563–571.  https://doi.org/10.1007/978-1-62703-992-5_36 CrossRefPubMedGoogle Scholar
  58. 58.
    Cretich M, Damin F, Chiari M (2014) Protein microarray technology: how far off is routine diagnostics? Analyst 139:528–542.  https://doi.org/10.1039/c3an01619f CrossRefPubMedGoogle Scholar
  59. 59.
    Solier C, Langen H (2014) Antibody-based proteomics and biomarker research—current status and limitations. Proteomics 14:774–783.  https://doi.org/10.1002/pmic.201300334 CrossRefPubMedGoogle Scholar
  60. 60.
    Wingren C (2016) Antibody-based proteomics. Adv Exp Med Biol 926:163–179.  https://doi.org/10.1007/978-3-319-42316-6-11 CrossRefPubMedGoogle Scholar
  61. 61.
    Ferrer I, Friguls B, Dalfó E, Planas AM (2003) Early modifications in the expression of mitogen-activated protein kinase (MAPK/ERK), stress-activated kinases SAPK/JNK and p38, and their phosphorylated substrates following focal cerebral ischemia. Acta Neuropathol 105:425–437PubMedGoogle Scholar
  62. 62.
    Li J, Li Y, Ogle M, Zhou X, Song M, Yu SP, Wei L (2010) DL-3-n-butylphthalide prevents neuronal cell death after focal cerebral ischemia in mice via the JNK pathway. Brain Res 1359:216–226.  https://doi.org/10.1016/j.brainres.2010.08.061 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Omori N, Jin G, Li F, Zhang WR, Wang SJ, Hamakawa Y, Nagano I, Manabe Y, Shoji M, Abe K (2002) Enhanced phosphorylation of PTEN in rat brain after transient middle cerebral artery occlusion. Brain Res 954:317–322CrossRefPubMedGoogle Scholar
  64. 64.
    Hata R, Maeda K, Hermann D, Mies G, Hossmann KA (2000) Dynamics of regional brain metabolism and gene expression after middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 20:306–315CrossRefPubMedGoogle Scholar
  65. 65.
    Küry P, Schroeter M, Jander S (2004) Transcriptional response to circumscribed cortical brain ischemia: spatiotemporal patterns in ischemic vs. remote non-ischemic cortex. Eur J Neurosci 19:1708–1720.  https://doi.org/10.1111/j.1460-9568.2004.03226.x CrossRefPubMedGoogle Scholar
  66. 66.
    Wu M, Zhang H, Kai J, Zhu F, Dong J, Xu Z, Wong M, Zeng LH (2017) Rapamycin prevents cerebral stroke by modulating apoptosis and autophagy in penumbra in rats. Ann Clin Transl Neurol 5:138–146.  https://doi.org/10.1002/acn3.507 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Wan JJ, Wang PY, Zhang Y, Qin Z, Sun Y, Hu BH, Su DF, Xu DP, Liu X (2019) Role of acute-phase protein ORM in a mice model of ischemic stroke. J Cell Physiol.  https://doi.org/10.1002/jcp.28653 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Li Y, Shen L, Cai L, Wang Q, Hou W, Wang F, Zeng Y, Zhao G, Yao L, Xiong L (2011) Spatial-temporal expression of NDRG2 in rat brain after focal cerebral ischemia and reperfusion. Brain Res 1382:252–258.  https://doi.org/10.1016/j.brainres.2011.01.023 CrossRefPubMedGoogle Scholar
  69. 69.
    Ma YL, Zhang LX, Liu GL, Fan Y, Peng Y, Hou WG (2017) N-Myc downstream-regulated gene 2 (Ndrg2) is involved in ischemia-hypoxia-induced astrocyte apoptosis: a novel target for stroke therapy. Mol Neurobiol 54:3286–3299.  https://doi.org/10.1007/s12035-016-9814-5 CrossRefPubMedGoogle Scholar
  70. 70.
    Demyanenko SV, Panchenko SN, Uzdensky AB (2015) Expression of neuronal and signaling proteins in penumbra around a photothrombotic infarction core in rat cerebral cortex. Biochemistry (Moscow) 80:790–799.  https://doi.org/10.1134/S0006297915060152 CrossRefGoogle Scholar
  71. 71.
    Uzdensky A, Demyanenko S, Fedorenko G, Lapteva T, Fedorenko A (2017) Photothrombotic infarct in the rat brain cortex: protein profile and morphological changes in penumbra. Mol Neurobiol 54:4172–4188.  https://doi.org/10.1007/s12035-016-9964-5 CrossRefPubMedGoogle Scholar
  72. 72.
    Engelmann D, Pützer BM (2010) Translating DNA damage into cancer cell death-A roadmap for E2F1 apoptotic signalling and opportunities for new drug combinations to overcome chemoresistance. Drug Resist Updat 13:119–131.  https://doi.org/10.1016/j.drup.2010.06.001 CrossRefPubMedGoogle Scholar
  73. 73.
    Meng P, Ghosh R (2014) Transcription addiction: can we garner the Yin and Yang functions of E2F1 for cancer therapy? Cell Death Dis 5:e1360.  https://doi.org/10.1038/cddis.2014.326 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Camins A, Verdaguer E, Folch J, Beas-Zarate C, Canudas AM, Pallàs M (2007) Inhibition of ataxia telangiectasia-p53-E2F-1 pathway in neurons as a target for the prevention of neuronal apoptosis. Curr Drug Metab 8:709–715CrossRefPubMedGoogle Scholar
  75. 75.
    Folch J, Junyent F, Verdaguer E, Auladell C, Pizarro JG, Beas-Zarate C, Pallàs M, Camins A (2012) Role of cell cycle re-entry in neurons: a common apoptotic mechanism of neuronal cell death. Neurotox Res 22:195–207.  https://doi.org/10.1007/s12640-011-9277-4 CrossRefPubMedGoogle Scholar
  76. 76.
    Raimundo N, Song L, Shutt TE, McKay SE, Cotney J, Guan MX, Gilliland TC, Hohuan D, Santos-Sacchi J, Shadel GS (2012) Mitochondrial stress engages E2F1 apoptotic signaling to cause deafness. Cell 148:716–726.  https://doi.org/10.1016/j.cell.2011.12.027 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Bretones G, Delgado MD, León J (2015) Myc and cell cycle control. Biochim Biophys Acta 1849:506–516.  https://doi.org/10.1016/j.bbagrm.2014.03.013 CrossRefPubMedGoogle Scholar
  78. 78.
    MacManus JP, Jian M, Preston E, Rasquinha I, Webster J, Zurakowski B (2003) Absence of the transcription factor E2F1 attenuates brain injury and improves behavior after focal ischemia in mice. J Cereb Blood Flow Metab 23:1020–1028.  https://doi.org/10.1097/01.WCB.0000084249.20114.FA CrossRefPubMedGoogle Scholar
  79. 79.
    Li Y, Chopp M, Zhang ZG, Zaloga C, Niewenhuis L, Gautam S (1994) p53-immunoreactive protein and p53 mRNA expression after transient middle cerebral artery occlusion in rats. Stroke 25:849–855CrossRefPubMedGoogle Scholar
  80. 80.
    Prunell GF, Arboleda VA, Troy CM (2005) Caspase function in neuronal death: delineation of the role of caspases in ischemia. Curr Drug Targets CNS Neurol Disord 4:51–61CrossRefPubMedGoogle Scholar
  81. 81.
    Tan J, Zhuang L, Jiang X, Yang KK, Karuturi KM, Yu Q (2006) Apoptosis signal-regulating kinase 1 is a direct target of E2F1 and contributes to histone deacetylase inhibitor-induced apoptosis through positive feedback regulation of E2F1 apoptotic activity. J Biol Chem 281:10508–10515.  https://doi.org/10.1074/jbc.M512719200 CrossRefPubMedGoogle Scholar
  82. 82.
    Bashari D, Hacohen D, Ginsberg D (2011) JNK activation is regulated by E2F and promotes E2F1-induced apoptosis. Cell Signal 23:65–70.  https://doi.org/10.1016/j.cellsig.2010.08.004 CrossRefPubMedGoogle Scholar
  83. 83.
    Haim Y, Blüher M, Konrad D, Goldstein N, Klöting N, Harman-Boehm I, Kirshtein B, Ginsberg D, Tarnovscki T, Gepner Y, Shai I, Rudich A (2017) ASK1 (MAP3K5) is transcriptionally upregulated by E2F1 in adipose tissue in obesity, molecularly defining a human dys-metabolic obese phenotype. Mol Metab 6:725–736.  https://doi.org/10.1016/j.molmet.2017.05.003 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Gao Y, Signore AP, Yin W, Cao G, Yin X, Sun F, Luo Y, Graham SH, Chen J (2005) Neuroprotection against focal ischemic brain injury by inhibition of c-Jun N-terminal kinase and attenuation of the mitochondrial apoptosis-signaling pathway. J Cereb Blood Flow Metab 25:694–712.  https://doi.org/10.1038/sj.jcbfm.9600062 CrossRefPubMedGoogle Scholar
  85. 85.
    de Olano N, Koo CY, Monteiro LJ, Pinto PH, Gomes AR, Aligue R, Lam EW (2012) The p38 MAPK-MK2 axis regulates E2F1 and FOXM1 expression after epirubicin treatment. Mol Cancer Res 10:1189–1202.  https://doi.org/10.1158/1541-7786.MCR-11-0559 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Hou ST, Xie X, Baggley A, Park DS, Chen G, Walker T (2002) Activation of the Rb/E2F1 pathway by the nonproliferative p38 MAPK during Fas (APO1/CD95)-mediated neuronal apoptosis. J Biol Chem 277:48764–48770CrossRefPubMedGoogle Scholar
  87. 87.
    Fisher OM, Lord SJ, Falkenback D, Clemons NJ, Eslick GD, Lord RV (2017) The prognostic value of TP53 mutations in oesophageal adenocarcinoma: a systematic review and meta-analysis. Gut 66:399–410.  https://doi.org/10.1136/gutjnl-2015-310888 CrossRefPubMedGoogle Scholar
  88. 88.
    Nijboer CH, Heijnen CJ, Groenendaal F, May MJ, van Bel F, Kavelaars A (2008) A dual role of the NF-kappaB pathway in neonatal hypoxic-ischemic brain damage. Stroke 39:2578–2586.  https://doi.org/10.1161/STROKEAHA.108.516401 CrossRefPubMedGoogle Scholar
  89. 89.
    Nijboer CH, Heijnen CJ, van der Kooij MA, Zijlstra J, van Velthoven CT, Culmsee C, van Bel F, Hagberg H, Kavelaars A (2011) Targeting the p53 pathway to protect the neonatal ischemic brain. Ann Neurol 70:255–264.  https://doi.org/10.1002/ana.22413 CrossRefPubMedGoogle Scholar
  90. 90.
    Leker RR, Aharonowiz M, Greig NH, Ovadia H (2004) The role of p53-induced apoptosis in cerebral ischemia: effects of the p53 inhibitor pifithrin alpha. Exp Neurol 187:478–486.  https://doi.org/10.1016/j.expneurol.2004.01.030 CrossRefPubMedGoogle Scholar
  91. 91.
    Morrison RS, Wenzel HJ, Kinoshita Y, Robbins CA, Donehower LA, Schwartzkroin PA (1996) Loss of the p53 tumor suppressor gene protects neurons from kainate-induced cell death. J Neurosci 16:1337–1345CrossRefPubMedGoogle Scholar
  92. 92.
    Cmielová J, Rezáčová M (2011) p21Cip1/Waf1 protein and its function based on a subcellular localization. J Cell Biochem 112:3502–3506.  https://doi.org/10.1002/jcb.23296 CrossRefPubMedGoogle Scholar
  93. 93.
    van Lookeren Campagne M, Gill R (1998) Increased expression of cyclin G1 and p21WAF1/CIP1 in neurons following transient forebrain ischemia: comparison with early DNA damage. J Neurosci Res 53:279–296CrossRefGoogle Scholar
  94. 94.
    Tu Y, Hou ST, Huang Z, Robertson GS, MacManus JP (1998) Increased Mdm2 expression in rat brain after transient middle cerebral artery occlusion. J Cereb Blood Flow Metab 18:658–669CrossRefPubMedGoogle Scholar
  95. 95.
    Bui T, Sequeira J, Wen TC, Sola A, Higashi Y, Kondoh H, Genetta T (2009) ZEB1 links p63 and p73 in a novel neuronal survival pathway rapidly induced in response to cortical ischemia. PLoS ONE 4:e4373.  https://doi.org/10.1371/journal.pone.0004373 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Fatt MP, Cancino GI, Miller FD, Kaplan DR (2014) p63 and p73 coordinate p53 function to determine the balance between survival, cell death, and senescence in adult neural precursor cells. Cell Death Differ 21:1546–1559.  https://doi.org/10.1038/cdd.2014.61 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F (2006) The c-Myc target gene network. Semin Cancer Biol 16:253–264.  https://doi.org/10.1016/j.semcancer.2006.07.014 CrossRefPubMedGoogle Scholar
  98. 98.
    Pelengaris S, Khan M, Evan G (2002) c-MYC: more than just a matter of life and death. Nat Rev Cancer 2:764–776.  https://doi.org/10.1038/nrc904 CrossRefPubMedGoogle Scholar
  99. 99.
    Poole CJ, van Riggelen J (2017) MYC-Master Regulator of the cancer epigenome and transcriptome. Genes (Basel).  https://doi.org/10.3390/genes8050142 CrossRefPubMedCentralGoogle Scholar
  100. 100.
    Gustafson WC, Weiss WA (2010) Myc proteins as therapeutic targets. Oncogene 29:1249–1259.  https://doi.org/10.1038/onc.2009.512 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Choi HK, Chung KC (2011) DYRK1A positively stimulates ASK1-JNK signaling pathway during apoptotic cell death. Exp Neurobiol 20:35–44.  https://doi.org/10.5607/en.2011.20.1.35 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Wegiel J, Gong CX, Hwang YW (2011) The role of DYRK1A in neurodegenerative diseases. FEBS J 278:236–245.  https://doi.org/10.1111/j.1742-4658.2010.07955.x CrossRefPubMedGoogle Scholar
  103. 103.
    Culmsee C, Zhu Y, Krieglstein J, Mattson MP (2001) Evidence for the involvement of Par-4 in ischemic neuron cell death. J Cereb Blood Flow Metab 21:334–343CrossRefPubMedGoogle Scholar
  104. 104.
    Culmsee C, Landshamer S (2006) Molecular insights into mechanisms of the cell death program: role in the progression of neurodegenerative disorders. Curr Alzheimer Res 3:269–283CrossRefPubMedGoogle Scholar
  105. 105.
    Roux PP, Barker PA (2002) Neurotrophin signaling through the p75 neurotrophin receptor. Prog Neurobiol 67:203–233CrossRefPubMedGoogle Scholar
  106. 106.
    Angelo MF, Aviles-Reyes RX, Villarreal A, Barker P, Reines AG, Ramos AJ (2009) p75 NTR expression is induced in isolated neurons of the penumbra after ischemia by cortical devascularization. J Neurosci Res 87:1892–1903.  https://doi.org/10.1002/jnr.21993 CrossRefPubMedGoogle Scholar
  107. 107.
    Onoue S, Kumon Y, Igase K, Ohnishi T, Sakanaka M (2005) Growth arrest and DNA damage-inducible gene 153 increases transiently in the thalamus following focal cerebral infarction. Brain Res Mol Brain Res 134:189–197.  https://doi.org/10.1016/j.molbrainres.2004.10.029 CrossRefPubMedGoogle Scholar
  108. 108.
    Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389.  https://doi.org/10.1038/sj.cdd.4401373 CrossRefGoogle Scholar
  109. 109.
    Paschen W, Gissel C, Linden T, Althausen S, Doutheil J (1998) Activation of gadd153 expression through transient cerebral ischemia: evidence that ischemia causes endoplasmic reticulum dysfunction. Brain Res Mol Brain Res 60:115–122CrossRefPubMedGoogle Scholar
  110. 110.
    Hayashi T, Saito A, Okuno S, Ferrand-Drake M, Doddand RL, Chan PK (2005) Damage to the endoplasmic reticulum and activation of apoptotic machinery by oxidative stress in ischemic neurons. J Cereb Blood Flow Metab 25:41–53.  https://doi.org/10.1038/sj.jcbfm.9600005 CrossRefPubMedGoogle Scholar
  111. 111.
    Jaenisch N, Popp A, Guenther M, Schnabel J, Witte OW, Frahm C (2014) Pro-apoptotic function of GABA-related transcripts following stroke. Neurobiol Dis 70:237–244.  https://doi.org/10.1016/j.nbd.2014.06.015 CrossRefPubMedGoogle Scholar
  112. 112.
    Schmidt-Kastner R, Zhang B, Belayev L, Khoutorova L, Amin R, Busto R, Ginsberg MD (2002) DNA microarray analysis of cortical gene expression during early recirculation after focal brain ischemia in rat. Brain Res Mol Brain Res 108:81–93CrossRefPubMedGoogle Scholar
  113. 113.
    Suk K (2005) Role of caspases in activation-induced cell death of neuroglial. Curr Enzyme Inhib 1:43–50CrossRefGoogle Scholar
  114. 114.
    Li MO, Sarkisian MR, Mehal WZ, Rakic P, Flavell RA (2003) Phosphatidylserine receptor is required for clearance of apoptotic cells. Science 302:1560–1563.  https://doi.org/10.1126/science.1087621 CrossRefPubMedGoogle Scholar
  115. 115.
    Kitagawa H, Warita H, Sasaki C, Zhang WR, Sakai K, Shiro Y, Mitsumoto Y, Mori T, Abe K (1999) Immunoreactive Akt, PI3-K and ERK protein kinase expression in ischemic rat brain. Neurosci Lett 274:45–48CrossRefPubMedGoogle Scholar
  116. 116.
    Wu HW, Li HF, Wu XY, Zhao J, Guo J (2008) Reactive oxygen species mediate ERK activation through different Raf-1-dependent signaling pathways following cerebral ischemia. Neurosci Lett 432:83–87.  https://doi.org/10.1016/j.neulet.2007.11.073 CrossRefPubMedGoogle Scholar
  117. 117.
    Zhao H, Sapolsky RM, Steinberg GK (2006) Phosphoinositide-3-kinase/Akt survival signal pathways are implicated in neuronal survival after stroke. Mol Neurobiol 34:249–270CrossRefPubMedGoogle Scholar
  118. 118.
    Liu BN, Han BX, Liu F (2014) Neuroprotective effect of pAkt and HIF-1α on ischemia rats. Asian Pac J Trop Med 7:221–225.  https://doi.org/10.1016/S1995-7645(14)60025-0 CrossRefPubMedGoogle Scholar
  119. 119.
    Hurn PD, Macrae IM (2000) Estrogen as a neuroprotectant in stroke. J Cereb Blood Flow Metab 20:631–652CrossRefPubMedGoogle Scholar
  120. 120.
    Koga S, Kojima S, Kishimoto T, Kuwabara S, Yamaguchi A (2012) Over-expression of map kinase phosphatase-1 (MKP-1) suppresses neuronal death through regulating JNK signaling in hypoxia/re-oxygenation. Brain Res 1436:137–146.  https://doi.org/10.1016/j.brainres.2011.12.004 CrossRefPubMedGoogle Scholar
  121. 121.
    Liu L, Doran S, Xu Y, Manwani B, Ritzel R, Benashski S, McCullough L, Li J (2014) Inhibition of mitogen-activated protein kinase phosphatase-1 (MKP-1) increases experimental stroke injury. Exp Neurol 261:404–411.  https://doi.org/10.1016/j.expneurol.2014.05.009 CrossRefPubMedGoogle Scholar
  122. 122.
    Coultrap SJ, Vest RS, Ashpole NM, Hudmon A, Bayer KU (2011) CaMKII in cerebral ischemia. Acta Pharmacol Sin 32:861–872.  https://doi.org/10.1038/aps.2011.68 CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Bading H (2013) Nuclear calcium signalling in the regulation of brain function. Nat Rev Neurosci 14:593–608.  https://doi.org/10.1038/nrn3531 CrossRefPubMedGoogle Scholar
  124. 124.
    Bell KF, Bent RJ, Meese-Tamuri S, Ali A, Forder JP, Aarts MM (2013) Calmodulin kinase IV-dependent CREB activation is required for neuroprotection via NMDA receptor-PSD95 disruption. J Neurochem 126:274–287.  https://doi.org/10.1111/jnc.12176 CrossRefPubMedGoogle Scholar
  125. 125.
    Chen B, Wu Z, Xu J, Xu Y (2015) Calreticulin binds to Fas ligand and inhibits neuronal cell apoptosis induced by ischemia-reperfusion injury. Biomed Res Int 2015:895284.  https://doi.org/10.1155/2015/895284 CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Mesaeli N, Phillipson C (2004) Impaired p53 expression, function, and nuclear localization in calreticulin-deficient cells. Mol Biol Cell 15:1862–1870.  https://doi.org/10.1091/mbc.E03-04-0251 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Su C, Sun F, Cunningham RL, Rybalchenko N, Singh M (2014) ERK5/KLF4 signaling as a common mediator of the neuroprotective effects of both nerve growth factor and hydrogen peroxide preconditioning. Age 36:9685.  https://doi.org/10.1007/s11357-014-9685-5 CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Bright R, Mochly-Rosen D (2005) The role of protein kinase C in cerebral ischemic stroke. Stroke 36:2781–2790CrossRefPubMedGoogle Scholar
  129. 129.
    Hara H, Onodera H, Yoshidomi M, Matsuda Y, Kogure K (1990) Staurosporine, a novel protein kinase C inhibitor, prevents postischemic neuronal damage in the gerbil and rat. J Cereb Blood Flow Metab 10:646–653CrossRefPubMedGoogle Scholar
  130. 130.
    Felipo V, Miñana MD, Grisolía S (1993) Inhibitors of protein kinase C prevent the toxicity of glutamate in primary neuronal cultures. Brain Res 604:192–196CrossRefPubMedGoogle Scholar
  131. 131.
    Li F, Chong ZZ, Maiese K (2005) Vital elements of the Wnt-Frizzled signaling pathway in the nervous system. Curr Neurovasc Res 2:331–340CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Mathieu P, Adami PV, Morelli L (2013) Notch signaling in the pathologic adult brain. Biomol Concepts 4:465–476.  https://doi.org/10.1515/bmc-2013-0006 CrossRefPubMedGoogle Scholar
  133. 133.
    Mastroiacovo F, Busceti CL, Biagioni F, Moyanova SG, Meisler MH, Battaglia G, Caricasole A, Bruno V, Nicoletti F (2009) Induction of the Wnt antagonist, Dickkopf-1, contributes to the development of neuronal death in models of brain focal ischemia. J Cereb Blood Flow Metab 29:264–276.  https://doi.org/10.1038/jcbfm.2008.111 CrossRefPubMedGoogle Scholar
  134. 134.
    Culbert AA, Brown MJ, Frame S, Hagen T, Cross DA, Bax B, Reith AD (2001) GSK-3 inhibition by adenoviral FRAT1 overexpression is neuroprotective and induces Tau dephosphorylation and beta-catenin stabilisation without elevation of glycogen synthase activity. FEBS Lett 507:288–294CrossRefPubMedGoogle Scholar
  135. 135.
    Russell JC, Kishimoto K, O’Driscoll C, Hossain MA (2011) Neuronal pentraxin 1 induction in hypoxic-ischemic neuronal death is regulated via a glycogen synthase kinase-3α/β dependent mechanism. Cell Signal 23:673–682.  https://doi.org/10.1016/j.cellsig.2010.11.021 CrossRefPubMedGoogle Scholar
  136. 136.
    Ma M, Wang X, Ding X, Teng J, Shao F, Zhang J (2013) Numb/Notch signaling plays an important role in cerebral ischemia-induced apoptosis. Neurochem Res 38:254–261.  https://doi.org/10.1007/s11064-012-0914-y CrossRefPubMedGoogle Scholar
  137. 137.
    Bading H (2017) Therapeutic targeting of the pathological triad of extrasynaptic NMDA receptor signaling in neurodegenerations. J Exp Med 214:569–578.  https://doi.org/10.1084/jem.20161673 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11:682–696.  https://doi.org/10.1038/nrn2911 CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Clemens JA (2000) Cerebral ischemia: gene activation, neuronal injury, and the protective role of antioxidants. Free Rad Biol Med 28:1526–1531CrossRefPubMedGoogle Scholar
  140. 140.
    Contestabile A (2008) Regulation of transcription factors by nitric oxide in neurons and in neural-derived tumor cells. Prog Neurobiol 84:317–328.  https://doi.org/10.1016/j.pneurobio.2008.01.002 CrossRefPubMedGoogle Scholar
  141. 141.
    Demyanenko S, Neginskaya M, Berezhnaya E (2017) Expression of class I histone deacetylases in ipsilateral and contralateral hemispheres after the focal photothrombotic infarction in the mouse brain. Transl Stroke Res.  https://doi.org/10.1007/s12975-017-0595-6 CrossRefPubMedGoogle Scholar
  142. 142.
    Hu Z, Zhong B, Tan J, Chen C, Lei Q, Zeng L (2017) The emerging role of epigenetics in cerebral ischemia. Mol Neurobiol 54:1887–1905.  https://doi.org/10.1007/s12035-016-9788-3 CrossRefPubMedGoogle Scholar
  143. 143.
    Schweizer S, Meisel A, Märschenz S (2013) Epigenetic mechanisms in cerebral ischemia. J Cereb Blood Flow Metab 33:1335–1346.  https://doi.org/10.1038/jcbfm.2013.93 CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Verkhratsky A, Butt A (eds) (2013) Glial physiology and pathophysiology. Wiley, New JerseyGoogle Scholar
  145. 145.
    Rego AC, Malva J (2007) Interaction between neurons and glia in aging and disease. Springer, BerlinGoogle Scholar
  146. 146.
    Kettenmann H, Ransom BA (2012) Neuroglia. Oxford University Press, OxfordGoogle Scholar
  147. 147.
    del Zoppo GJ (2009) Relationship of neurovascular elements to neuron injury during ischemia. Cerebrovasc Dis 27(Suppl 1):65–76.  https://doi.org/10.1159/000200442 CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Dirnagl U (2012) Pathobiology of injury after stroke: the neurovascular unit and beyond. Ann N Y Acad Sci 1268:21–25.  https://doi.org/10.1111/j.1749-6632.2012.06691.x CrossRefPubMedGoogle Scholar
  149. 149.
    Puig B, Brenna S, Magnus T (2018) Molecular communication of a dying neuron in stroke. Int J Mol Sci 9:19.  https://doi.org/10.3390/ijms19092834 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Molecular Neurobiology, Academy of Biology and BiotechnologySouthern Federal UniversityRostov-on-DonRussia

Personalised recommendations