, Volume 23, Issue 2, pp 170–186 | Cite as

Dynamic changes and molecular analysis of cell death in the spinal cord of SJL mice infected with the BeAn strain of Theiler’s murine encephalomyelitis virus

  • Ingo Gerhauser
  • Lin Li
  • Dandan Li
  • Stephanie Klein
  • Suliman Ahmed Elmarabet
  • Ulrich Deschl
  • Arno Kalkuhl
  • Wolfgang Baumgärtner
  • Reiner Ulrich
  • Andreas Beineke
Original Paper


Theiler’s murine encephalomyelitis (TME) is caused by the TME virus (TMEV) and represents an important animal model for multiple sclerosis (MS). Oligodendroglial apoptosis and reduced apoptotic elimination of encephalitogenic leukocytes seem to participate in autoimmune demyelination in MS. The present study quantified apoptotic cells in BeAn–TMEV-induced spinal cord white matter lesions at 14, 42, 98, and 196 days post infection (dpi) using immunostaining. Apoptotic cells were identified by transmission electron microscopy and double-immunofluorescence. The mRNA expression of apoptosis-related genes was investigated using microarray analysis. Oligodendroglial apoptosis was already detected in the predemyelinating phase at 14 dpi. Apoptotic cell numbers peaked at 42 dpi and decreased until 196 dpi partly due to reduced T cell apoptosis. In addition to genes involved in the classical pathways of apoptosis induction, microarray analysis detected the expression of genes related to alternative mechanisms of cell death such as pyroptosis, necroptosis, and endoplasmic reticulum stress. Consequently, oligodendroglial apoptosis is involved in the initiation of the TME demyelination process, whereas the development of apoptosis resistance of T cells potentially favors the maintenance of inflammation and myelin loss.


Apoptosis Endoplasmic reticulum stress Multiple sclerosis Necroptosis Pyroptosis Theiler’s murine encephalomyelitis virus 



The authors wish to thank Bettina Buck, Petra Grünig, Claudia Herrmann, Kerstin Rohn, Kerstin Schöne, Caroline Schütz, and Danuta Waschke for their excellent technical assistance. Lin Li (File No. 201206170042) and Dandan Li (File No. 201606170128) were supported by grants from the China Scholarship Council. This study was supported by the Deutsche Forschungsgemeinschaft (DFG, BE 4200/3-1) and in part by the Niedersachsen-Research Network on Neuroinfectiology (N-RENNT) of the Ministry of Science and Culture of Lower Saxony, Germany.

Compliance with ethical standards

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Supplementary material

10495_2018_1448_MOESM1_ESM.docx (28.5 mb)
Supplementary material 1 (DOCX 29160 KB)


  1. 1.
    Baranzini SE, Mudge J, van Velkinburgh JC et al (2010) Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 464:1351–1356CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rosche B, Kieseier B, Hartung HP, Hemmer B (2003) [New understanding of the immunopathogenesis of multiple sclerosis]. Der Nervenarzt 74:654–663CrossRefPubMedGoogle Scholar
  3. 3.
    Hänninen A (2017) Infections in MS: an innate immunity perspective. Acta Neurol Scand 136(Suppl 201):10–14CrossRefPubMedGoogle Scholar
  4. 4.
    Brown C (2016) Aetiology: neighbourhood watch. Nature 540:S4-S6CrossRefPubMedGoogle Scholar
  5. 5.
    Ruprecht K, Wildemann B, Jarius S (2017) Low intrathecal antibody production despite high seroprevalence of Epstein-Barr virus in multiple sclerosis: a review of the literature. J Neurol.
  6. 6.
    Mentis AA, Dardiotis E, Grigoriadis N, Petinaki E, Hadjigeorgiou GM (2017) Viruses and multiple sclerosis: from mechanisms and pathways to translational research opportunities. Mol Neurobiol 54:3911–3923CrossRefPubMedGoogle Scholar
  7. 7.
    Oleszak EL, Chang JR, Friedman H, Katsetos CD, Platsoucas CD (2004) Theiler’s virus infection: a model for multiple sclerosis. Clin Microbiol Rev 17:174–207CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Aubert C, Brahic M (1995) Early infection of the central nervous system by the GDVII and DA strains of Theiler’s virus. J Virol 69:3197–3200PubMedPubMedCentralGoogle Scholar
  9. 9.
    Mecha M, Carrillo-Salinas FJ, Mestre L, Feliu A, Guaza C (2013) Viral models of multiple sclerosis: neurodegeneration and demyelination in mice infected with Theiler’s virus. Prog Neurobiol 101–102:46–64CrossRefPubMedGoogle Scholar
  10. 10.
    Tsunoda I, Fujinami RS (2010) Neuropathogenesis of Theiler’s murine encephalomyelitis virus infection, an animal model for multiple sclerosis. J Neuroimmune Pharmacol 5:355–369CrossRefPubMedGoogle Scholar
  11. 11.
    McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD (2005) Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med 11:335–339CrossRefPubMedGoogle Scholar
  12. 12.
    Lucchinetti CF, Bruck W, Lassmann H (2004) Evidence for pathogenic heterogeneity in multiple sclerosis. Ann Neurol 56:308CrossRefPubMedGoogle Scholar
  13. 13.
    Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55:458–468CrossRefPubMedGoogle Scholar
  14. 14.
    Henderson AP, Barnett MH, Parratt JD, Prineas JW (2009) Multiple sclerosis: distribution of inflammatory cells in newly forming lesions. Ann Neurol 66:739–753CrossRefPubMedGoogle Scholar
  15. 15.
    Carlson NG, Hill KE, Tsunoda I, Fujinami RS, Rose JW (2006) The pathologic role for COX-2 in apoptotic oligodendrocytes in virus induced demyelinating disease: implications for multiple sclerosis. J Neuroimmunol 174:21–31CrossRefPubMedGoogle Scholar
  16. 16.
    Tsunoda I, Kurtz CI, Fujinami RS (1997) Apoptosis in acute and chronic central nervous system disease induced by Theiler’s murine encephalomyelitis virus. Virology 228:388–393CrossRefPubMedGoogle Scholar
  17. 17.
    Tsunoda I, Libbey JE, Fujinami RS (2007) TGF-beta1 suppresses T cell infiltration and VP2 puff B mutation enhances apoptosis in acute polioencephalitis induced by Theiler’s virus. J Neuroimmunol 190:80–89CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Artemiadis AK, Anagnostouli MC (2010) Apoptosis of oligodendrocytes and post-translational modifications of myelin basic protein in multiple sclerosis: possible role for the early stages of multiple sclerosis. Eur Neurol 63:65–72CrossRefPubMedGoogle Scholar
  19. 19.
    Hebb AL, Moore CS, Bhan V et al (2008) Expression of the inhibitor of apoptosis protein family in multiple sclerosis reveals a potential immunomodulatory role during autoimmune mediated demyelination. Mult Scler 14:577–594CrossRefPubMedGoogle Scholar
  20. 20.
    Oleszak EL, Hoffman BE, Chang JR et al (2003) Apoptosis of infiltrating T cells in the central nervous system of mice infected with Theiler’s murine encephalomyelitis virus. Virology 315:110–123CrossRefPubMedGoogle Scholar
  21. 21.
    Seidi OA, Sharief MK (2002) The expression of apoptosis-regulatory proteins in B lymphocytes from patients with multiple sclerosis. J Neuroimmunol 130:202–210CrossRefPubMedGoogle Scholar
  22. 22.
    Semra YK, Seidi OA, Sharief MK (2001) Overexpression of the apoptosis inhibitor FLIP in T cells correlates with disease activity in multiple sclerosis. J Neuroimmunol 113:268–274CrossRefPubMedGoogle Scholar
  23. 23.
    Sharief MK, Matthews H, Noori MA (2003) Expression ratios of the Bcl-2 family proteins and disease activity in multiple sclerosis. J Neuroimmunol 134:158–165CrossRefPubMedGoogle Scholar
  24. 24.
    Sharief MK, Noori MA, Douglas MR, Semra YK (2002) Upregulated survivin expression in activated T lymphocytes correlates with disease activity in multiple sclerosis. Eur J Neurol 9:503–510CrossRefPubMedGoogle Scholar
  25. 25.
    Sharief MK, Semra YK (2001) Heightened expression of survivin in activated T lymphocytes from patients with multiple sclerosis. J Neuroimmunol 119:358–364CrossRefPubMedGoogle Scholar
  26. 26.
    Sharief MK, Semra YK (2001) Upregulation of the inhibitor of apoptosis proteins in activated T lymphocytes from patients with multiple sclerosis. J Neuroimmunol 119:350–357CrossRefPubMedGoogle Scholar
  27. 27.
    Waiczies S, Weber A, Lunemann JD, Aktas O, Zschenderlein R, Zipp F (2002) Elevated Bcl-X(L) levels correlate with T cell survival in multiple sclerosis. J Neuroimmunol 126:213–220CrossRefPubMedGoogle Scholar
  28. 28.
    Zettl UK, Kuhlmann T, Bruck W (1998) Bcl-2 expressing T lymphocytes in multiple sclerosis lesions. Neuropathol Appl Neurobiol 24:202–208CrossRefPubMedGoogle Scholar
  29. 29.
    Zipp F (2000) Apoptosis in multiple sclerosis. Cell Tissue Res 301:163–171CrossRefPubMedGoogle Scholar
  30. 30.
    Schlitt BP, Felrice M, Jelachich ML, Lipton HL (2003) Apoptotic cells, including macrophages, are prominent in Theiler’s virus-induced inflammatory, demyelinating lesions. J Virol 77:4383–4388CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ulrich R, Baumgärtner W, Gerhauser I et al (2006) MMP-12, MMP-3, and TIMP-1 are markedly upregulated in chronic demyelinating theiler murine encephalomyelitis. J Neuropathol Exp Neurol 65:783–793CrossRefPubMedGoogle Scholar
  32. 32.
    Gerhauser I, Alldinger S, Baumgärtner W (2007) Ets-1 represents a pivotal transcription factor for viral clearance, inflammation, and demyelination in a mouse model of multiple sclerosis. J Neuroimmunol 188:86–94CrossRefPubMedGoogle Scholar
  33. 33.
    Ulrich R, Kalkuhl A, Deschl U, Baumgärtner W (2010) Machine learning approach identifies new pathways associated with demyelination in a viral model of multiple sclerosis. J Cell Mol Med 14:434–448CrossRefPubMedGoogle Scholar
  34. 34.
    Kummerfeld M, Meens J, Haas L, Baumgärtner W, Beineke A (2009) Generation and characterization of a polyclonal antibody for the detection of Theiler’s murine encephalomyelitis virus by light and electron microscopy. J Virol Methods 160:185–188CrossRefPubMedGoogle Scholar
  35. 35.
    Ofengeim D, Ito Y, Najafov A et al (2015) Activation of necroptosis in multiple sclerosis. Cell Rep 10:1836–1849CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wang Y, Ren Z, Tao D, Tilwalli S, Goswami R, Balabanov R (2010) STAT1/IRF-1 signaling pathway mediates the injurious effect of interferon-gamma on oligodendrocyte progenitor cells. Glia 58:195–208CrossRefPubMedGoogle Scholar
  37. 37.
    Saeed AI, Sharov V, White J et al (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378PubMedGoogle Scholar
  38. 38.
    Ulrich R, Seeliger F, Kreutzer M, Germann PG, Baumgärtner W (2008) Limited remyelination in Theiler’s murine encephalomyelitis due to insufficient oligodendroglial differentiation of nerve/glial antigen 2 (NG2)-positive putative oligodendroglial progenitor cells. Neuropathol Appl Neurobiol 34:603–620CrossRefPubMedGoogle Scholar
  39. 39.
    Herder V, Iskandar CD, Kegler K et al (2015) Dynamic changes of microglia/macrophage M1 and M2 polarization in Theiler’s murine encephalomyelitis. Brain Pathol 25:712–723CrossRefPubMedGoogle Scholar
  40. 40.
    Clarke P, Tyler KL (2009) Apoptosis in animal models of virus-induced disease. Nat Rev Microbiol 7:144–155CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Sato F, Martinez NE, Stewart EC, Omura S, Alexander JS, Tsunoda I (2015) “Microglial nodules” and “newly forming lesions” may be a Janus face of early MS lesions; implications from virus-induced demyelination, the Inside-Out model. BMC Neurol 15:219CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kruidering M, Evan GI (2000) Caspase-8 in apoptosis: the beginning of “the end”? IUBMB Life 50:85–90CrossRefPubMedGoogle Scholar
  43. 43.
    Chowdhury D, Lieberman J (2008) Death by a thousand cuts: granzyme pathways of programmed cell death. Ann Rev Immunol 26:389–420CrossRefGoogle Scholar
  44. 44.
    Chwieralski CE, Welte T, Buhling F (2006) Cathepsin-regulated apoptosis. Apoptosis 11:143–149CrossRefPubMedGoogle Scholar
  45. 45.
    de Rivero Vaccari JP, Dietrich WD, Keane RW (2014) Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury. J Cereb Blood Flow Metab 34:369–375CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Said-Sadier N, Ojcius DM (2012) Alarmins, inflammasomes and immunity. Biomed J 35:437–449CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wang S, Miura M, Jung YK, Zhu H, Li E, Yuan J (1998) Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92:501–509CrossRefPubMedGoogle Scholar
  48. 48.
    Jacobs SR, Damania B (2012) NLRs, inflammasomes, and viral infection. J Leukoc Biol 92:469–477CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Labzin LI, Lauterbach MA, Latz E (2016) Interferons and inflammasomes: cooperation and counterregulation in disease. J Allergy Clin Immunol 138:37–46CrossRefPubMedGoogle Scholar
  50. 50.
    Ming X, Li W, Maeda Y et al (2002) Caspase-1 expression in multiple sclerosis plaques and cultured glial cells. J Neurol Sci 197:9–18CrossRefPubMedGoogle Scholar
  51. 51.
    Furlan R, Filippi M, Bergami A et al (1999) Peripheral levels of caspase-1 mRNA correlate with disease activity in patients with multiple sclerosis; a preliminary study. J Neurol Neurosurg Psychiatry 67:785–788CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Shaw PJ, Lukens JR, Burns S, Chi H, McGargill MA, Kanneganti TD (2010) Cutting edge: critical role for PYCARD/ASC in the development of experimental autoimmune encephalomyelitis. J Immunol 184:4610–4614CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Fernandes-Alnemri T, Wu J, Yu JW et al (2007) The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 14:1590–1604CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73:1907–1916CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7:99–109CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Labbe K, Saleh M (2008) Cell death in the host response to infection. Cell Death Differ 15:1339–1349CrossRefPubMedGoogle Scholar
  57. 57.
    Son KN, Lipton HL (2015) Inhibition of Theiler’s virus-induced apoptosis in infected murine macrophages results in necroptosis. Virus Res 195:177–182CrossRefPubMedGoogle Scholar
  58. 58.
    Buntinx M, Moreels M, Vandenabeele F et al (2004) Cytokine-induced cell death in human oligodendroglial cell lines: I. Synergistic effects of IFN-gamma and TNF-alpha on apoptosis. J Neurosci Res 76:834–845CrossRefPubMedGoogle Scholar
  59. 59.
    Loda E, Balabanov R (2012) Interferon regulatory factor 1 regulation of oligodendrocyte injury and inflammatory demyelination. Rev Neurosci 23:145–152CrossRefPubMedGoogle Scholar
  60. 60.
    Pouly S, Becher B, Blain M, Antel JP (2000) Interferon-gamma modulates human oligodendrocyte susceptibility to Fas-mediated apoptosis. J Neuropathol Exp Neurol 59:280–286CrossRefPubMedGoogle Scholar
  61. 61.
    Vartanian T, Li Y, Zhao M, Stefansson K (1995) Interferon-gamma-induced oligodendrocyte cell death: implications for the pathogenesis of multiple sclerosis. Mol Med 1:732–743PubMedPubMedCentralGoogle Scholar
  62. 62.
    Bourdon JC, Renzing J, Robertson PL, Fernandes KN, Lane DP (2002) Scotin, a novel p53-inducible proapoptotic protein located in the ER and the nuclear membrane. J Cell Biol 158:235–246CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Meir O, Dvash E, Werman A, Rubinstein M (2010) C/EBP-beta regulates endoplasmic reticulum stress-triggered cell death in mouse and human models. PLoS ONE 5:e9516CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Shimazawa M, Ito Y, Inokuchi Y, Hara H (2007) Involvement of double-stranded RNA-dependent protein kinase in ER stress-induced retinal neuron damage. Invest Ophthalmol Vis Sci 48:3729–3736CrossRefPubMedGoogle Scholar
  65. 65.
    Tomasini R, Samir AA, Vaccaro MI et al (2001) Molecular and functional characterization of the stress-induced protein (SIP) gene and its two transcripts generated by alternative splicing. SIP induced by stress and promotes cell death. J Biol Chem 276:44185–44192CrossRefPubMedGoogle Scholar
  66. 66.
    Camicia R, Bachmann SB, Winkler HC et al (2013) BAL1/ARTD9 represses the anti-proliferative and pro-apoptotic IFNgamma-STAT1-IRF1-p53 axis in diffuse large B-cell lymphoma. J Cell Sci 126:1969–1980CrossRefPubMedGoogle Scholar
  67. 67.
    Cho SH, Goenka S, Henttinen T et al (2009) PARP-14, a member of the B aggressive lymphoma family, transduces survival signals in primary B cells. Blood 113:2416–2425CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ge B, Li O, Wilder P, Rizzino A, McKeithan TW (2003) NF-kappa B regulates BCL3 transcription in T lymphocytes through an intronic enhancer. J Immunol 171:4210–4218CrossRefPubMedGoogle Scholar
  69. 69.
    Haanstra KG, Dijkman K, Bashir N et al (2015) Selective blockade of CD28-mediated T cell costimulation protects rhesus monkeys against acute fatal experimental autoimmune encephalomyelitis. J Immunol 194:1454–1466CrossRefPubMedGoogle Scholar
  70. 70.
    Li H, Park D, Abdul-Muneer PM et al (2013) PI3Kgamma inhibition alleviates symptoms and increases axon number in experimental autoimmune encephalomyelitis mice. Neuroscience 253:89–99CrossRefPubMedGoogle Scholar
  71. 71.
    Michel L, Berthelot L, Pettre S et al (2008) Patients with relapsing-remitting multiple sclerosis have normal Treg function when cells expressing IL-7 receptor alpha-chain are excluded from the analysis. J Clin Invest 118:3411–3419PubMedPubMedCentralGoogle Scholar
  72. 72.
    Polachini CR, Spanevello RM, Casali EA et al (2014) Alterations in the cholinesterase and adenosine deaminase activities and inflammation biomarker levels in patients with multiple sclerosis. Neuroscience 266:266–274CrossRefPubMedGoogle Scholar
  73. 73.
    Lundmark F, Duvefelt K, Hillert J (2007) Genetic association analysis of the interleukin 7 gene (IL7) in multiple sclerosis. J Neuroimmunol 192:171–173CrossRefPubMedGoogle Scholar
  74. 74.
    Lawson BR, Gonzalez-Quintial R, Eleftheriadis T et al (2015) Interleukin-7 is required for CD4(+) T cell activation and autoimmune neuroinflammation. Clin Immunol 161:260–269CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Jones RG, Elford AR, Parsons MJ et al (2002) CD28-dependent activation of protein kinase B/Akt blocks Fas-mediated apoptosis by preventing death-inducing signaling complex assembly. J Exp Med 196:335–348CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Tabi Z, McCombe PA, Pender MP (1994) Apoptotic elimination of V beta 8.2 + cells from the central nervous system during recovery from experimental autoimmune encephalomyelitis induced by the passive transfer of V beta 8.2+ encephalitogenic T cells. Eur J Immunol 24:2609–2617CrossRefPubMedGoogle Scholar
  77. 77.
    Hebb AL, Moore CS, Bhan V, Robertson GS (2008) Targeting apoptosis to treat multiple sclerosis. Curr Drug Discov Technol 5:75–77CrossRefPubMedGoogle Scholar
  78. 78.
    Sharief MK, Semra YK, Seidi OA, Zoukos Y (2001) Interferon-beta therapy downregulates the anti-apoptosis protein FLIP in T cells from patients with multiple sclerosis. J Neuroimmunol 120:199–207CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ingo Gerhauser
    • 1
  • Lin Li
    • 1
  • Dandan Li
    • 1
  • Stephanie Klein
    • 1
  • Suliman Ahmed Elmarabet
    • 1
  • Ulrich Deschl
    • 3
  • Arno Kalkuhl
    • 3
  • Wolfgang Baumgärtner
    • 1
    • 2
  • Reiner Ulrich
    • 1
    • 2
    • 4
  • Andreas Beineke
    • 1
    • 2
  1. 1.Department of PathologyUniversity of Veterinary Medicine HannoverHannoverGermany
  2. 2.Center for Systems Neuroscience HannoverHannoverGermany
  3. 3.Department of Non-Clinical Drug SafetyBoehringer Ingelheim Pharma GmbH & Co. KGBiberach (Riss)Germany
  4. 4.Department of Experimental Animal Facilities and Biorisk ManagementFriedrich-Loeffler-InstitutGreifswaldGermany

Personalised recommendations